Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приемники света

Как следует из (11.13) и (11.14), при удалении источника и приемника друг от друга, т. е. при их положительной относительной скорости происходит сдвиг в область более длинных волн (v < v, X > Л), что называется красным смещением. При сближении источника и приемника света v > v (V < А), г. е. происходит так называемое фиолетовое смещение.  [c.424]

Отличительная черта метода с использованием термоэлектрических элементов — отсутствие селективной чувствительности к излучению разных длин волн, характерной для всех остальных приемников света. Это, с одной стороны, громадное преимущество термоэлектрических приемников света, а с другой — их недостаток. В самом деле, используя другие явления (например, фотоэффект), можно получить хотя и селективные, но более чувствительные для данной области спектра приемники радиации.  [c.12]


В дальнейшем мы рассмотрим конкретные методы получения наибольшей величины отношения сигнал/шум при использовании различных приемников света, а сейчас имеет смысл остановиться на вопросе о границах всевозможных видов излучения внутри оптического диапазона спектра. Обычно считают, что длины волн видимого спектра лежат в интервале 4000—7000 А. Хорошо известно, что внутри этого интервала чувствительность глаза изменяется по закону, представленному на рис. 1, достигая максимального значения в зеленой области (л 5000 А). Хотя такая чувствительность глаза связана с длительным приспособ-  [c.12]

Б наших рассуждениях мы исходим из того, что на опыте обычно измеряется групповая скорость U. Это действительно так практически все приемники света реагируют на усредненное значение квадрата напряженности электрического поля <Е >. Более того, детальный анализ любого эксперимента по определению скорости электромагнитных волн показывает, что в опыте тем или иным способом образуется импульс света, который затем регистрируется. Наиболее ясно это выявляется при изучении различных способов, основанных на прерывании света (метод Физо, Майкельсона и т. д.). Следует также указать, что все радиолокационные установки в диапазоне УКВ работают на принципе эхо , регистрируя отраженный сигнал и измеряя т = 2R/U, где R — расстояние до исследуемого объекта. Так как в воздухе t/ = ц = с, то Я = сх/2. Многократная проверка правильности показаний локаторов и свидетельствует о том, что в этом случае U = с.  [c.50]

Действительно, все применяемые на практике приемники света оптимально реагируют на поток излучения, зависящий от времени по закону sin ujt. В процессе измерения исследуемый сигнал усредняется, если нужно — усиливается, а показания устройства, регистрирующего сигнал на выходе прибора, пропорциональны квадрату амплитуды напряженности электрического поля, создаваемого данной монохроматической волной.  [c.70]

Направим лучи 1 и 2 (после их соединения см. рис. 5.48) через диафрагму (или щель) на какой-либо приемник света (фотоумножитель, фотоэлемент) и зарегистрируем после усиления возники ий сигнал на осциллографе. При равномерном движении зеркала II разность хода Д монотонно увеличивается, а суммарная интенсивность сигнала изменяется по закону  [c.233]

Проведем расчет продольного эффекта Доплера, используя преобразования Лоренца. F5 этом случае относительная скорость движения приемника света и излучателя v и нормаль к плоской волне направлены вдоль одно ) прямой, которая совпадает с направлением оси ОХ (рис, 7.10). Уравнение плоской волны в связанной с излучателем системе А, Y, Z  [c.383]


В системе X, Y, Z, связанной с приемником света,  [c.383]

Очевидно, что сдвигу в область более длинных волн (v < v, X > X, красное смещение) соответствует положительная относительная скорость приемника и излучателя (и > 0), т.е. источник и приемник электромагнитных волн удаляются один от другого. При фиолетовом смещении (v > v, л < /.) происходит сближение источника и приемника света. Ниже эти соотношения проиллюстрированы примерами из астрофизики.  [c.385]

Соотношение (7.44) показывает, что при фиксации прямого угла между п и v в системе, связанной с приемником света, поперечный эффект Доплера должен приводить к красному смещению  [c.386]

Метод регистрации фазы волны и ее восстановления, разобранный выше на примере плоской волны, называется голографией. В переводе с греческого голография означает полная запись , т. е. в названии подчеркнута возможность регистрации исчерпывающих сведений о волновом поле на поверхности приемника света. Фотопластинка, на которой зафиксирована интерференционная картина  [c.238]

Описанный выше способ объемной голографии позволяет осуществить цветные изображения с вполне удовлетворительным качеством цветопередачи. Для уяснения принципа цветной голографии следует иметь в виду, что цветное зрение связано с существованием в сетчатке глаза трех типов приемников света, реагирующих на красное, зеленое и синее излучение (см. 193). Можно сказать, что изображение предмета на сетчатке глаза представляет собой как бы три совмещенные изображения, рассматриваемые в трех указанных интервалах длин волн. Подобный принцип совмещения изображений применяется и в цветной репродукции, где в зависимости от требуемого качества цветопередачи совмещают от трех до 10—15 изображений в различных красках.  [c.265]

Конечно, не всегда быстрота процесса восстановления голо-графического изображения гарантирует малое время работы системы, включающей в себя и регистрацию восстановленного изображения. Время инерции глаза, например, составляет приблизительно 0,1 с, и при визуальной регистрации изображения инерционность системы в целом определяется глазом. Однако существуют приемники света с временем инерции 10 и еще меньше (например фотоумножители, см. 181) и, следовательно, быстродействие голографии может быть реализовано.  [c.269]

Уже при изучении явления Допплера мы встретились с вопросом о том, как протекает оптическое явление в случае движения системы, в которой оно происходит. При рассмотрении этой проблемы существенное значение имеет ответ на следующий вопрос возможно ли установить движение источника света и воспринимающих свет приборов относительно среды, в которой свет распространяется, или возможно лишь установление относительного движения источника и приемника света друг относительно друга. Мы подходим, таким образом, к общей задаче оптики (и электродинамики) движущихся сред, имеющей большое принципиальное значение, ибо огромное большинство наших опытов протекает в земных лабораториях, т. е. в системе, движущейся относительно других небесных тел. Представляется важным знать, отражается ли этот факт на протекании наблюдаемых явлений и как именно.  [c.441]

На рис. 35.3, а показана траектория, по которой глаз последовательно осматривает детали объекта, а на рис. 35.3, б — сам объект. Точки соответствуют тем местам, на которых глаз останавливается, черточки — перемещению глаза. Таким образом, глаз как приемник света сочетает в себе особенности, присущие фотографическому и фотоэлектрическому методу регистрации. Одновременно, с хорошим разрешением воспринимается конечная, но небольшая часть изображения. Все же изображ ение регистрируется за счет последовательного просматривания. Такое устройство позволяет концентрировать внимание на наиболее существенных деталях предметов и вместе с тем получать некоторое общее представление обо всём, что находится в поле зрения. Благодаря этой особенности глаза мы не замечаем ограниченности поля ясного зрения и оцениваем поле зрения глаза по вертикальному и горизонтальному направлениям примерно в 120—150°, т.е. значительно больше, чем у очень хороших оптических инструментов.  [c.676]

Излучение Вавилова—Черенкова нашло разнообразные применения в экспериментальной ядерной физике и физике элементарных частиц. Несмотря на чрезвычайную слабость свечения, приемники света достаточно чувствительны, чтобы зарегистрировать излучение, порожденное единственной заряженной частицей. Созданы приборы, которые позволяют по излучению Вавилова—Черенкова определять заряд, скорость и направление движения частицы, ее полную энергию. Практически важно применение излучения Вавилова-Черенкова для контроля работы ядерного реактора.  [c.764]


Дело в том, что технические средства не в состоянии прямым путем измерить фазу столь высокочастотных колебаний, какими являются световые сигналы, поскольку реакция любого приемника света (фотоумножителя, фотодиода, фототранзистора и даже человеческого глаза) определяется значением средней интенсивности света. Однако решение этой задачи оказалось неожиданно очень простым. Д. Габор предложил использовать для получения голограммы интерференцию двух когерентных пучков света, называемых обычно объектным и опорным, а для восстановления изображения с голограммы — явление дифракции света.  [c.10]

В эксперименте всегда измеряется групповая скорость света, поскольку, как уже указывалось, практически все приемники света реагируют на усредненное значение квадрата напряженности электрического поля < >. Кроме того, в любом опыте ио определению скорости электромагнитных волн тем или иным способом формируется импульс света, который затем регистрируется. В отличие от групповой скорости света фазовую скорость нельзя измерить непосредственно. Эту величину определяют из соотношения v = n.  [c.89]

Таким образом, отличительной особенностью фотогальванического эффекта по сравнению с другими видами фотоэффекта является прямое преобразование световой энергии в электрическую, что позволяет использовать фотогальванические приемники света не только для регистрации световых сигналов, но и в электрических цепях как источники электрической энергии.  [c.170]

Следует отметить, что на р—/г-переходе возникает и фотоэлектродвижущая сила, так что подобные приемники света могут работать как вентильные фотоэлементы, не требующие источника питания.  [c.174]

При рассмотрении проблемы, как протекает оптическое явление в случае движения си-сте.мы, в которой оно происходит, существенное значение имеет ответ на вопрос можно ли установить движение источника света и воспринимающих свет приборов относительно среды, в которой свет распространяется, или можно лишь установить движение источника и приемника света относительно друг друга.. Это очень важная задача оптики и вообще электродинамики движущихся сред, имеющая огромное принципиальное значение, так как подавляющее большинство опытов протекает-в земных условиях, т. с. в системе, движущейся относительно других небесных тел. Необходимо знать, отражается ли этот факт, а если отражается, то каким образом, иа протекании наблюдаемых явлений.  [c.203]

Излучение Черенкова — Вавилова нашло широкое применение в ядерной физике и физике элементарных частиц. На нем основано действие так называемых черепковских счетчиков, т. е. детекторов релятивистских заряженных частиц, излучение которых регистрируется с помощью фотоумножителей. Несмотря на исключительную слабость свечения, приемники света достаточно чувствительны, чтобы зарегистрировать излучение, порожденное единственной заряженной частицей. Созданы приборы, которые позволяют по излучению Черенкова — Вавилова определять заряд, скорость и направление движения частицы, ее энергию. Важно применение излучения Черепкова — Вавилова для контроля работы ядерных реакторов.  [c.266]

Применение кварцевых деталей и алюминиевых зеркал позволяет проводить работу на приборе в области от 210 до 1100 нм. Прибор снабжен сменными источниками и приемниками света. При работе в области 220—380 нм источником света служит водородная лампа, обладающая непрерывным спектром в УФ-части спектра в области 380—1100 нм используется лампа накаливания, имеющая непрерывный спектр излучения в этом диапазоне длин волн. В качестве приемников излучения для измерений в области 220—640 нм применяется сурьмяно-цезиевый фотоэлемент, в области 620—1100 нм — кислородно-цезиевый фотоэлемент, которые здесь наиболее чувствительны. Для уменьшения фона от рассеянного света на пути выходящего из монохроматора луча устанавливаются светофильтры. При измерениях в области спектра 320— 400 нм устанавливается светофильтр из стекла УФС-2, а в области 580—620 нм — из стекла ОС-14.  [c.195]

Для проведения исследований с использованием оптикомеханического способа считывания разработано устройство, внешний вид которого представлен на рис. 75 [36]. Радиографическую пленку помещают на прозрачный барабан, внутри которого вдоль образующей перемещается диафрагмированный источник света, просвечивающий участок пленки. Приемник света размещен вне барабана и перемещается синхронно с источником. При вращении барабана осуществляются сканирование всей площади пленки и отсчет координат площади считывания. Сигналы с приемника света через блоки преобразования поступают в ЭВМ Минск-22 . Обработка информации аналогична обработке, описанной в работе [35]. Однако способ считывания значительно изменяет программное обеспечение.  [c.128]

Расширен раздел курса, иосвя1Ценный рассмотрению основ фотонной теории, позволивший характеризовать важнейшее свойство света - его дуализм - и оценить границы применимости электромагнитной теории света, изложению которой посвящены основные разделы этой книги. Кроме того, включение сведений о термодинамике излучения, формуле Планка, законах фотоэффекта и свойствах приемников света должно способствовать более широкому использованию этого учебного пособия в университетах и втузах.  [c.8]

Очевидно, что монохроматическая волна не может быть непосредственно использованной для передачи информации — она никогда не начиналась, никогда не кончается и любой приемник покажет К д- onst. Для того чтобы стало возможным использовать монохроматическую волну в этих целях, ее нужно закодировать, т. е. создать сигнал, который после регистрации и расшифровки будет содержать необходимую информацию. Наиболее простым способом кодирования является модуляция амплитуды волны, которая может осуществляться различными способами (в том числе н механическим прерыванием излучения по определенному закону). При этом возникает амплитудно-модулированж е колебание E(t) =-= Eq(1 ) oa(w< — <р), где Eo(t) — медленно изменяющаяся амплитуда (например, звуковой частоты (I) 10 Гц, в то время как несуп ая частота относится к оптическому диапазону 10 Гц). Модулированный сигнал регистрируется приемником света и после высоко-  [c.43]


Для простоты и наглядности рассуждений будем считать, что разность между o)i и (02 (а также между со2 и м3) значительно превышает ширину аппаратной функции йм. Тогда измерение интенсивности света на одной частоте не приведет к искажению измерений на другой частоте и мы зарегистрируем три максимума. Пусть приемник света в исследуемом интервале частот малоселективен, а поглощение радиации в самом приборе неселективно. Тогда отношение квадратов амплитуд (или отношение площадей под тремя пиками на спектрограмме) будет равно отношению . Если преодолеть трудности с калибровкой прибора, всегда сопутствующие абсолютным измерениям , то сумма указанных площадей определит среднее значение исследуемой функции.  [c.69]

Вскоре был предложен остроумный метод гигантского увеличения интенсивности второй гармоники (до нескольких десятков процентов), названный фазовым или пространственным синхронизмом. Для его понимания следует учитывать следующие особенности рассматриваемого процесса. Вторичные волны, возникающие при воздействии излучения на какой-либо ансамбль атомов, в обычной (линейной) аптике обладают одной и той же фазовой скоростью и одновременно доходят до приемника света, усиливая друг друга. Фазовая скорость волн удвоенной частоты будет иной, и эффект усиления N будет иметь место лишь в том случае, когда показатель преломления среды для волн частот m и 2со будет одинаков. Но такую среду можно создать искусственно, используя, например, кристалл КДП (рис.4.22). Поверхность пересекается с поверхностью nj, и, следовательно, волны, распространяющиеся в направлении, указанном на чертеже стрелкой, имеют одинаковую скорость. Это и будет направ-  [c.170]

Применение метода Гюйгенса—Френеля в данном случае весьма просто. Будем считать, что воображаемая поверхность а совпадает с плоскостью непрозрачного экрана и целиком закрывает исследуемое отверстие. В наиболее простом случае — нормальное падение исходной волны на поверхность экрана — дополнительная разность хода лучей от различных участков щели определяется углом дифракции (р. Упрощается и вычисление множителя А (ц/), значение которого влияет на интенсивность в центре дифракционной картины и не сказывается на распределении интенсивности. В эксперименте же, как правило, исследуется лишь относительная интенсивность (интенсивность в центре дифрак-ционнной картины условно принимается равной единице), так как относительные измерения несравненно проще и надежнее абсолютных измерений распределения освещенности, требующих предварительной градуировки приемников света, учета возможного поглощения и т. д.  [c.282]

Конечно, любой критерий разрешения (в том числе и критерий Рэлея) следует считать условным. Фактически возможность разрешения двух близких спектральных линий лимитируется наличием шумов в источнике и приемнике света, ограничивающим точность измерения полезного сигнала. При хорошем отноилении сигнал/шум можно измерить провал в суммарном контуре, значительно меньший определяемого критерием Рэлея.  [c.319]

Второй постулат свод1ггся к утверждению, что существует конечная максимальная скорость распространения любого взаимодействия, которая равна с — скорости света в вакууме. По принципу относительности эта скорость одинакова во всех инерциальных системах и не зависит от длины волны, интенсивности и относительной скорости движения источника и приемника света. Таким образом отвергаются теорема сложения скоростей в классической механике и различные построения, которые выдвигались в свое время для истолкования отрицательного результата опыта Майкельсона - Морли.  [c.372]

Хорошо известно, что фазы двух монохроматических волн всегда скоррелированы и, встречаясь, эти две волны близких частот интерферируют. Пусть фотоэлектрический умножитель (или какой-либо другой приемник света, работающий как квадратичный детектор) освещен светом двух монохроматических источников с частотами и 0)2, т.е.  [c.395]

I < Ei + 2)2 > учтем, что все высокочастотные колебания (частоты 2й11, 2со2, (ю1 + 2) усреднятся приемником света и переменная часть фототока сигнал биений) будет представлена модулированным сигналом с разностной частотой  [c.395]

Для экспериментального осуществления интерференции двух волн, фазы которых скоррелированы, используем установку (см. 5.6), представляющую собой интерферометр Майкельсона, одно из зеркал которого может передвигаться с помощью специального приспособления со скоростью v по отрезку длиной Д/l. Пусть интерферометр освещается светом фиксированной частоты fflj, перед фотоумножителем устанавливается круглая или щелевая диафрагма и электрический сигнал регистрируется с помощью осциллографа. В данном случае Aro/oi = 2 v/ , так как относительная скорость источника и приемника света при отражении его от зеркала, движущегося со скоростью v, будет 2и.  [c.395]

Радиационная температура. Схема измерений ясна из рис. 8.8. Интегральную энергетическую светимость измеряют каким-либо малоселективным приемником света, примерно одинаково реагирующим на излучение всех длин волн (например, термопарой или термостолбиком). Для того чтобы учесть заниженную (по сравнению с черным телом) энергетическую светимость данного нечерного тела, вводят некий коэффициент, показывающий, во сколько раз нужно как бы уменьшить значение а для вычисления температуры этого излучателя из закона Стефана—Больцмана. Другими словами, при измерениях температуры пользуются интерполяционной формулой  [c.413]

Простейши.м фотоэлектрическим приемником света является фотоэлемент. Принцип его действия ясен из рис. 8.17. Фотоэлемент представляет собой хорошо эвакуированную и затем отпаянную колбу, на часть внутренней поверхности которой  [c.436]

Величина фото-э.д.с. существенно зависит от свойств используемого полупроводника и технологии изготовления. Для уменьшения флуктуаций темпового тока полезно охлаждение устройства. Широкое распространение получили германиевые и кремниевые фотодиоды. На рис. 8.28 приведены спектральные характеристики таких приемников света. Как видно, максимальная чувствительность германиевого фотодиода наблюдается в такой области длин волн (). iiK мкм), где использование фотоумножителей практически уже невозможно.  [c.443]

Рис. 10.29. В опыте Майкельсона и Морли интерферометр состоял из источника света s, полупрозрачного зеркала а, зеркал ft и с и приемника света — зрительной трубы d f — фокальная плоскость зрительной трубы. Если интерферометр был неподвижен относительно эфира, то с помощью трубы d можно было наблюдать интерференцик> Рис. 10.29. В опыте Майкельсона и Морли интерферометр состоял из <a href="/info/10172">источника света</a> s, полупрозрачного зеркала а, зеркал ft и с и приемника света — <a href="/info/14685">зрительной трубы</a> d f — <a href="/info/12774">фокальная плоскость</a> <a href="/info/14685">зрительной трубы</a>. Если интерферометр был неподвижен относительно эфира, то с помощью трубы d можно было наблюдать интерференцик>
Важной чертой метода Брауна н Твнсса является значительно меньшая чувствительность измерений к небольшим неточностям в перемещении приемников света, равно как и к нестабильности атмосферы, чем в интерференционном методе Майкельсона. Это обстоятельство позволило создать прибор, в котором расстояние О может доходить до 180 м и который позволяет измерять угловые диаметры звезд вплоть до 0,0005.  [c.198]

В зависимости от материала фотокатода и материала колбы фотоэлемента их можно применять в диапазоне 0,2—1,1 мкм. Их интегральная чувствительность лежит в пределах 20—100 мкА на 1 лм светового потока, а термоэмиссия — в пределах 10 — 10" А/см . Очень важным достоинством вакуумных фотоэлементов является их высокое постоянство и линейность связи светового потока с фототоком. Поэтому они длительное время преимущественно использовались в объективной фото.метрии, спектрометрии, спектрофотометрии и спектральном анализе в видимой и ультрафиолетовой областях спектра. Главным недостатком вакуумных фотоэлементов при световых измерениях следует считать малость электрических сигналов, вырабатываемых этими приемниками света. Последний недостаток полностью устраняется в фотоэлектронных умножителях (ФЭУ), представляющих как бы развитие фотоэлементов. ФЭУ были впервые построены в 1934 г.  [c.650]


Большим преимуществом всех приемников света, использующих внешний фотоэффект, является то обстоятельство, что их фототок не изменяется при изменении нагрузки. Это означает, что при малых значениях фототока можно применить практически сколь угодно большое сопротивление нагрузки и тем самым достичь значения падения напряжения на нем, достаточно удобного для регистрации и усиления. С другой стороны, заменяя сопротивление на емкость, можно, измеряя напряжение на этой емкости, получать величину, пропорциональную усредненной величине светового потока за заданный интервал времени. Последнее чрезвычайно важно в тех случаях, когда необходимо измерить световой поток от нестабильного источника света — ситуация, типичная для спектроаиалитиче-ских измерений.  [c.651]

Обсуждение результатов опыта Aparo и вообще вопроса о влиянии движения источников и приемников света на оптические явления происходило уже в рамках волновой тсо-  [c.203]


Смотреть страницы где упоминается термин Приемники света : [c.423]    [c.12]    [c.316]    [c.387]    [c.388]    [c.388]    [c.111]    [c.239]    [c.676]   
Смотреть главы в:

Прикладная физическая оптика  -> Приемники света


Прикладная физическая оптика (1961) -- [ c.281 ]



ПОИСК



Абсолютная, относительная и спектральная чувствительности приемников света

Глаз человека как оптическая система и приемник света

Источники и приемники света

Источники и приемники света (В. Л. Панов, Я Кругер)

Источники и приемники света (М. Я- Кругер)

Приемник

Приемники света тепловые

Связь интенсивности света и повышения температуры приемника

Чувствительности приемников свет

Чувствительность абсолютная приемников света

Чувствительность приемников света интегральна



© 2025 Mash-xxl.info Реклама на сайте