Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соединение термопластичное полимерное

Принципиально сваривать можно все термопластичные полимерные материалы, практически же до сих пор сварка применяется только для соединения полихлорвинила, полиэтилена, полиметакрилатов и полиамидов. Наиболее полно разработана технология и наиболее часто применяется сварка твердого полихлорвинила. При сварке пластифицированного полихлорвинила, полиэтилена и полиметилметакрилата возникают большие трудности, поэтому сварка этих материалов распространена не так широко.  [c.80]

Наполнитель может в корне изменить технологические свойства ПМ, влияющие на процесс сборки. Если наполнитель обладает электропроводностью (например, углеродное волокно), то соединение термопластичных КМ можно выполнить не типичным для ПМ методом (индукционной или электроконтактной сваркой). Между тем сам наполнитель (даже полимерной природы) в образовании связи поверхностей не участвует сварка термопластичных ПКМ возможна только за счет плавкости матрицы. Наоборот, процесс ведут таким образом, чтобы не нарушить схему укладки волокон.  [c.30]


Термопластичные полимерные соединения при нагревании приобретают пластичность, при охлаждении возвращаются в жесткое состояние, повторно и неоднократно плавятся без изменения свойств материала. К ним относятся все пластмассы класса А и частично класса Б (полистирол, полиэтилен, винипласт, капрон и др.).  [c.186]

Кроме связующих и наполнителей применяют пластификаторы— Л-чя улучшения технологических и эксплуатационных свойств пластмасс. Пластификаторы также увеличивают холодостойкость пластмасс и устойчивость их к воздействию ультрафиолетового излучения. В некоторых пластмассах содержание пластификатора может достигать 30—40%. На определенных стадиях переработки в пластмассы добавляют сшивающие реагенты , различные инициаторы полимеризации в сочетании с ускорителями и активаторами, красители различных классов и неорганические пигменты. В некоторые пластмассы вводятся стабилизаторы — химические соединения, способствующие длительному сохранению свойств пластмасс и повышению стойкости пластмасс к воздействию теплоты, света, кислорода воздуха. По способности к формованию полимерные материалы подразделяются на две группы термопластичные (термопласты) и термореактивные (реактопласты). При формовании изделий из термопластов химический состав полимеров не изменяется, а в реактопластах происходит изменение их структуры и состава.  [c.216]

Вследствие релаксационных явлений натяг втулки из капрона с течением времени может снизиться или вовсе исчезнуть, поэтому в ряде случаев прибегают к дополнительной фиксации полимерной втулки в обойме с помощью шпоночного выступа (рис. 21, б). Втулки с фланцами фиксируются выступами, расположенными на фланце (рис. 21, в). Этот способ фиксации более совершенен, так как наличие шпоночного выступа является причиной нарушения цилиндричности рабочей поверхности подшипника в процессе его работы и нагревания, что снижает его работоспособность. Втулки можно крепить по торцам (рис. 21, а) с применением распорной пружины, компенсирующей осевые температурные деформации полимерных втулок [76]. Конструктивно проще клеевые соединения втулок. Однако технология склеивания термопластичных материалов со сталью сложна. При этом затруднен демонтаж втулки при ремонте подшипника.  [c.40]

Прочность и характер деформирования термопластичных ПКМ зависят от условий эксплуатации и в первую очередь от температуры и скорости нагружения [11]. Учет подобной специфики позволяет не только назначать режимы обработки ПМ и область рабочих температур для сборных изделий, но и объяснять с позиций механики поведение, например, адгезионных соединений, выполненных посредством полимерных клеевых прослоек. Так, при повышении температуры снижение модуля сдвига материала клеевой прослойки в нахлесточном соединении, характеризующемся концентрацией касательных напряжений у краев перекрытия (см. раздел 7), может привести к снижению этой концентрации и в итоге к повышению прочности соединения, что иногда без должных доказательств объясняется другими причинами (дальнейшим отверждением клеевого слоя, релаксацией остаточных напряжений, увеличением силы адгезии и др.).  [c.32]


Замковые соединения относятся к одним из наиболее простых, экономичных и быстрых в выполнении способов соединения деталей из полимерных, в первую очередь термопластичных, материалов друг с другом и с металлическими деталями.  [c.72]

Соединение, более устойчивое к нагреву, получают, осуществляя клепку при повышенных температурах [67]. Восстановление первоначальной формы стержня не наблюдается, если образование головки термопластичной заклепки проводить при нагреве выступающей части стержня до температуры текучести материала. При клепке таким способом исключается ползучесть полимерной детали в отличие от расклепывания при нормальной температуре [9].  [c.183]

Характерной особенностью элементоорганических полимерных соединений является сочетание термической стойкости, твердости, светостойкости и устойчивости против действия сильных электрических полей с эластичностью, термопластичностью и другими свойствами органических высокомолекулярных соединений.  [c.256]

Создание полимерных материалов привело к производству специализированных соединений, которые обладают смешанными характеристиками и свойствами термопластичных и термореактивных материалов.  [c.34]

В самосмазывающихся материалах полимерное связующее осуществляет закрепление частиц твердой смазки в блоке детали, способствует удалению частиц с трущихся поверхностей при их относительном перемещении, более эффективному распределению наполнителя по поверхности и всему объему композиционного материала. В качестве связующих при создании композиционных материалов получили распространение как термопластичные, так и термореактивные полимеры, а наполнителями являются твердые смазки и, прежде всего, графит, сульфиды, селениды металлов, оксиды металлов, йодистые и бромистые соединения и др. вещества.  [c.55]

Сварка термопластичных полимерных материалов основана на их способности при нагревании переходить из твердого стеклообразного состояния в пластичное, а затем в вязко-текучее состояние. В пластичном и особенно в вязко-текучем состоянии термопласты приобретают мягкость и могут образовывать прочные соединения. Под небольшим давлением резко возрастает взаимо-диффузия подвилсных макромолекул пограничных слоев соединяемых деталей.  [c.294]

Мономеры при реакции поликонденсации должны содержать не менее двух функциональн1 1х групп (группы —ОН —СООН —Нг и др.). При реакциях полимеризации и поликонденсации обычно получают полимеры линейного строения. Часть таких полимеров при определенной повышенной температуре переходит из твердого состояния в пластичное, а затем при охлаждении снова в твердое. Это их свойство наряду с использованием пластических деформаций создает возможность перерабатывать такие материалы в изделия различной формы и конфигурации. Полимеры, которые при нагревании до определенной температуры размягчаются, носят название термопластичных. К термопластичным полимерам относятся неполярные полимерные соединения, например полимерные углеводороды (полиэтилен, полипропилен и т. д.), или симметрично построенные полярные полимеры, у которых суммарный ди-польный момент равен О, например политетрафторэтилен (фторопласт)  [c.133]

Из полимерных соединений, применяемых для получения термореактивных конструкционных материалов, обкладок, композиций и лаков, наибольшее применение нашли материалы на основе 1 )еноло-формальдегидных смол, кремнийорганических соединений и эпоксидных смол из термопластичных соединений — виниловые смолы, полиэтилеиы, полиизобутилены, фторопласты, синтетические каучуки и др.  [c.391]

В основе всех материалов, предназначенных для получения полимерных покрытий, лежат пленкообразующие вещества, которые, собственно, и делают материал способным давать пленку на твердой подложке. В качестве пленкообразующих используются в основном синтетические смолы — эпоксидные, полиэфирные, алкидные, фенолформалъдегидные, кремнийоргаииче-ские и лр, а также ряд природных материалов — высыхающие масла, нитроцеллюлоза, битумы и т. д. В большинстве случаев пленкообразующие вещества представляют собой олигомеры, которые содержат реакционноспособные группы и при отверждении превращаются в высокомолекулярные соединения (термореактивные пленкообразующие). Но часто в качестве пленкообразующих используют растворы высокомолекулярных соединений, отверждение которых состоит в простом удалении растворителя- (термопластичные пленко-образующие).  [c.73]


Используя космический корабль Спейс шаттл , НАСА планирует примерно в 2000 г. закончить строительство космической солнечной электростанции. Предполагается, что в космосе будет сооружена платформа размером 10,4 х 5,2 х 0,5 км мощность солнечной электростанции составит 9000 МВт. Солнечная энергия будет передаваться на Землю в виде микроволн и затем на специальных наземных подстанциях преобразовываться в электрическую энергию [8]. Такая крупногабаритная платформа проектируется с использованием описанных выше складных конструкций. Детали платформы будут сложенными транспортироваться в космос, где будет проводиться сборка. Рассматриваются следующие два варианта такой транспортировки. Согласно первому из них на Земле будут формовать сплющенные трубы (длина около 2,6 м, диаметр с одного края около 10 см, с другого - 5 см), сматывать их в рулон, транспортировать на корабле Спейс шаттл и собирать в космосе [9]. По второму варианту предварительно формуют тонкую ленту из термопласта (например, полиэфирсульфона) и углеродных волокон, наматывают ее на бобину, транспортируют в космос, формуют в космосе с помощью показанной на рис. 6.3 автоматической формовочной машины, а затем осуществляют сборку. Особенности второго метода - использование в качестве полимерных матриц термопластичных смол с введенными в них специальными добавками и последующее соединение частей (с помощью растворителя или под действием давления и температуры) уже в космосе. Второй способ представляется более предпочтительным. Согласно [8], для изготовления платформы размером 10,4 X 5,2 X 0,5 км предполагается использовать около 1000 т углепластиков.  [c.207]

Поскольку при формовании деталей из наполненных термопластов на их поверхности образуется лишь тонкий полимерный слой, то уже априори свариваемость термопластичного ПКМ должна отличаться от свариваемости ненаполнен-ных термопластов. Эмпирически пришли к выводу, что менее дефектная граница контакта свариваемых поверхностей возникает при сварке ПКМ с ненаполненным термопластом. Эти данные и вывод о необходимости наличия достаточного слоя термопласта на поверхности свариваемого материала для обеспечения высокой прочности соединения [86-88] привели к заключению о целесообразности использования прокладок из ненаполненного полимера между соединяемыми поверхностями деталей из термопластичных ПКМ [84]. Такие прокладки оказались достаточно эффективными при сварке в расплаве новейших типов армированных волокнами термопластов [87, 89-91]. Подобно тому, как рост объемного содержания матрицы в ПКМ ведет к увеличению его межслоевой трещиностойкости, введение дополнительного количества термопласта в зону сварки способствует повышению трешиностойкости соединения.  [c.345]

Сопоставляя термопластичные ПКМ на основе различных армирующих материалов (тканых, нетканых и нитепрошивных), установили, что армирующая основа, выполненная в виде сетки, с точки зрения свариваемости предпочтительнее других видов армировок, причем с увеличением вязкости расплава матрицы размеры ячеек армирующей ткани должны быть увеличены [86]. Так, при вязкости расплава полимерной матрицы от 10 Па-с и выше размеры ячеек сетки должны быть не менее 3 мм. Соблюдая такие рекомендации, получают материал с достаточно высоким значением межслоевой прочности и, как следствие, с высокой прочностью сварного соединения. Более высокую прочность сварного соединения при расслаивании обеспечивает гибридизация наполнителя в армированных пленочных материалах на основе ПВХ, проведенная таким образом, чтобы наружный слой из хлопковых и капроновых нитей в армирующей ткани состоял из хлопкового волокна. Прочность сварного соединения рассматриваемого материала, возрастает, как и следовало ожидать, после модифицирования ПВХ уретановым термоэластопластом, повышающим прочность сцепления покрытия с армирующей тканью. Влияние прочности сцепления матричного полимера с армирующей тканью на прочность сварного соединения обнаружили при изучении свариваемости ВЧ-методом материалов, предназначенных для автомобильных тентов.  [c.347]

Полимерные материалы изготавливают из высокомолекулярных органических соединений, содержащих обычно сотни и тысячи атомов. Молекулы таких соединений называют макромолекулами. Они построены из одинаковых, многократно повторяющихся групп атомов — элементарных звеньев. Макромолекулы могут быть линейными, разветвленными и пространственными (сетчатыми). Полимеры, имеющие линейную и разветвленную структуры, эластичны, растворимы, плавятся или размягчаются при нагревании. Такие полимеры называются термопластичными. Полимеры, имеющие пространствегную структуру, не плавятся при нагревании,  [c.71]

Металлоконструкции и различного вида аппараты и изделия предохраняют от коррозии, покрывая их полимерными материалами. Полимеры на защищаемую поверхность наносят в виде листовых материалов, суспензии, мелкодисперсных порошков или растворов различными способами газовым и вихревым напылением, лриклеиванием и т. д. Изделия после нанесения сначала нагревают. Например, при покрытии фторопластом их нагревают до 260—275°С, а затем охлаждают, в результате чего образуется слой толщиной от десятков микрометров до нескольких миллиметров. В качестве полимерных материалов применяют термопластичные полимеры полиэтилен, полипропилен, полиизобутилен, эпоксидные соединения, полиамиды, поливинилбутираль и др.  [c.126]

Советский ученый К- А. Андрианов поставил перед собой задачу разработки полимерных соединений, которые при одновременном присутствии в них и углерода и кремния образовали бы промежуточную область между органическими и неорганическими материалами и, по возможности, обладали бы ценными свойствами как тех, так и других, в частности достаточной гибкостью при относительно высокой нагревостойкости. Работы, проведенные под руководством К. А. Андрианова, за которые оп и его сотрудница О. И. Грибанова были удостоены в 1946 г. Сталинской премии, привели к созданию кремнийорганических полимеров (полиорганосилоксанов). Эти соединения могут быть получены как в виде смол — и термопластичных и термореактивных, так и в виде жидкостей ( 10), в виде эластичных каучукообразных материалов ( 30) и др. Кремнийорганические смолы могут употребляться для из. -с-  [c.77]


По типу полимерных соединений пластмассы подразделяют на термопластичные и термореактивные. Термопластичные пластмассы содержат высокомолекулярные полимеры или сополимеры линейной структуры (полиэтилен, полистирол, поливинилхлорид и т. д.). В их состав входят также пластификаторы, стабилизаторы. При нагревании термопласты приобретают пластичность, размягчаются, а при охлаждении вновь возвращаются в твердое упругое состояние и сохраняют свои прежние свойства. Термо реактивные пластмассы содержат низкомолекулярные полимеры, отверждающиеся с образованием полимеров трехмерной структуры при нагревании или под влиянием катализаторов (феноло-  [c.75]

Советский ученый проф. К. А. Андрианов поставил перед собой задачу разработки полимерных соединений, которые при одновременном присутствии в них и углерода, и кремния образовали бы промежуточную область между органическими и неорганическими материалами и, по возможности, обладали бы ценными свойствами как тех, так и других, в частности достаточной гибкостью при относительно высокой нагревостойкости. Работы, проведенные под 1руководством К. А. Андрианова, за которые он и его сотрудник О. И. Грибанова были удостоены в 1946 г. Сталинской премии, привели к созданию нового обширного класса ранее неизвестных соединений, — кр е м н и й о р-ганических полимеров (полисил океан о в). Эти соединения могут быть получены как в виде смол — и термопластичных, и термореага-ивных, так и в виде жидкостей (стр. 66), в виде эластичных каучукообразных материалов и пр. Кремнийорганические смолы могут употребляться для изготовления пластических масс, лаков и пр. Кремнийорганические полимеры обладают весьма благоприятными свойствами значительной нагревостойкостью (их рабочая температура может быть порядка +200° С и даже  [c.78]

В качестве ТСМ обычно выбирают вещества, имеющие ламелярную структуру тальк, слюду, графит, дисульфиды молибдена, вольфрама и титана, буру, нитрид бора, бромиды олова и кадмия, сульфат серебра, иодиды висмута, никеля и кадмия, доталоцианин, селениды и теллуриды вольфрама [2]. В состав ТСМ входят также твердые органические соединения такие, как мыла, воски, твердые жиры. В ряд смазочных композиций включают полимерные пленки и ткани (нейлон, полиэтилен, полиамид, политетрафторэтилен, полифенилсилоксаны, термопластичные и фторированные полимеры и др.), а также металлические твердые покрытия из меди, латуни, свинца, олова, бария и цинка. Слоистые материалы, порошки металлов и полимеров применяют не только как самостоятельное смазочное средство, но и как наполнитель или присадку к пластичным, жидким и газообразным СОТС.  [c.271]

Принципиальные технологические затруднения, влияющие впоследствии на качество отделки, могут возникать при нанесении покрытий на детали, формообразованные из двух или нескольких конструкционных материалов. Примерами таких деталей могут служить стальные или латунные элементы конструкции, армированные полимерными материалами, или разнородные металлические детали, соединенные при помощи пайки, а также узлы из алюминиевых сплавов, изготовляемые литьем под давлением с одновременной армировкой деталями из черных или цветных металлов. При выборе покрытий и способов их нанесения на такие комбинированные детали необходимо сопоставлять и оценивать химическую и термическую стойкость используемых конструкционных материалов. Невозможно, например, подвергать анодной обработке силуминовую деталь, армированную стальными втулками, которые в процессе электролитического оксидирования будут интенсивно растворяться. Нежелательно применять лакокрасочные покрытия горячей сушки для металлических деталей, совмещенных с термопластичными и т. п. Недопустимо выбирать стеклоэмалевые покрытия для деталей или узлов, состоящих из различных по сечению и массе участков металла. Эмалирование таких деталей приводит к деформации или пережогу отдельных мест покровной пленки.  [c.14]


Смотреть страницы где упоминается термин Соединение термопластичное полимерное : [c.589]    [c.136]    [c.400]    [c.24]    [c.70]    [c.138]    [c.34]    [c.41]    [c.100]    [c.140]    [c.153]   
Авиационный технический справочник (1975) -- [ c.186 ]



ПОИСК



Термопластичность



© 2025 Mash-xxl.info Реклама на сайте