Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение динамически переменное (циклическое)

РАЗРУШЕНИЕ ПРИ ПОЛЗУЧЕСТИ ПРИ ПЕРЕМЕННЫХ ЦИКЛИЧЕСКИХ НАПРЯЖЕНИЯХ И ПЕРЕМЕННЫХ ТЕМПЕРАТУРАХ 5.1.1. Разрушение при динамической ползучести  [c.130]

Механическое поведение резины при переменных циклических нагружениях носит более сложный характер, чем рассмотренные особенности статической деформации. Сложная взаимосвязь между динамическими напряжениями и деформациями при циклическом нагружении резины обусловлена релаксационной природой  [c.35]


Уже в первой половине XIX века было замечено, что детали машин и сооружений при действующих длительное время циклических нагрузках могут разрушаться внезапно без заметных остаточных деформаций при значительно меньших напряжениях, чем разрушающие напряжения при статическом нагружении. Явление понижения прочности материала при динамических переменных во времени напряжениях было названо усталостью, или в ы н о с л и в о с т ь ю, материала. Не совсем удачное-наименование данного явления усталость материала , сохранившееся по настоящее время, не случайно. В начале изучен причин разрушения материала при циклических нагрузках была сделано предположение, что под влиянием длительно действующих переменных напряжений материал устает и его статическая прочность понижается. Однако опыты на статическое растяжение деталей, длительное время работавших при циклических нагрузках, показали, что механические свойства материала под действием переменных напряжений не изменяются. Не подтвердилось также предположение, что переменные напряжения изменяют структуру материала. Исследованием материала под микроскопом после воздействия циклических напряжений обнаружено, что структура его не изменяется.  [c.489]

Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе материала для изготовления деталей машин необходимо прежде всего учитывать его механические свойства прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвергают воздействию внешних сия нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (повторно-переменными). Нагрузка вызывает в твердом теле напряжение и деформацию.  [c.16]

Другим конструкциям свойственны нестационарные условия циклической нагруженности. Это является следствием изменчивости технологических сопротивлений, развиваемых мощностей, тепловых состояний, нестабильности колебательных состояний, динамических воздействий в условиях движения и ряда других причин. В связи с этим процессы переменной напряженности описываются на основе вероятностных представлений с использованием решений соответствующих задач статистической динамики упругих систем и статистического анализа результатов измерения эксплуатационной нагруженности в условиях службы изделий.  [c.165]


В работах [2, 18] рассмотрены вопросы нагруженности образца и точности определения нагруженности в связи с возникновением дополнительных динамических процессов в упругой системе. ВвиДу специфического характера возбуждения циклически меняющихся напряжений от статически приложенного усилия переменная составляющая нагрузки не входит в измеряемую величину и для выяснения ее роли необходимо рассмотреть влияние сил инерции на результирующую напряженность образца. Показано, что это влияние, неодинаковое для различных волокон образца, становится наибольшим в плоскости расположения эксцентриситета. В этом случае получено следующее выражение для напряжений в зависимости от действительного нагружающего усилия  [c.89]

Модели нагружения. Эти модели содержат схематизацию внешних нагрузок по координатам, времени, а также по воздействию внешних полей и сред. Силовые нагрузки, действующие на конструкции, можно разделить на три группы 1) объемные или массовые силы 2) поверхностные силы 3) сосредоточенные силы. Объемные нагрузки действуют на каждую частицу внутри тела. К таким нагрузкам относятся собственный вес конструкции, силы инерции, силы магнитного притяжения и т.п. Поверхностные нагрузки распределены по значительным участкам и являются результатом взаимодействия различных конструктивных элементов одного с другим или с другими физическими объектами (например, давление жидкости или газа на стенки сосуда, давление ветра на оболочку градирни и т.п.). Если силы действуют на небольшую поверхность конструкции, то их можно рассматривать как сосредоточенные нагрузки, условно приложенные в одной точке. По характеру действия нагрузки можно разделить на статические и динамические. Статическая нагрузка возрастает от нуля до своего номинального значения и остается постоянной во время эксплуатации конструкции. Переменное, или динамическое, нагружение — нагружение, изменяющееся во времени. Часто встречающимся видом переменного нагружения являются циклические нагрузки, характеризующиеся периодическим изменением значения и/или знака. Модели нагружения должны учитывать воздействие полей и сред. Наиболее существенным является воздействие температурного поля. Изменение температуры элементов конструкций вызывает температурные деформации. Если они не удовлетворяют уравнениям совместности деформаций, то в элементах конструкций возникают температурные напряжения, значения которых часто оказываются соизмеримы со значениями напряжений, возникающих от воздействия внешних сил. Кроме того, изменение температуры влияет на механические характеристики конструкционных материалов. В некоторых случаях приходится учитывать влияние нейтронного облучения, электромагнитного поля, воздействие коррозионных сред.  [c.401]

В нашем примере внешняя сила (груз) сохраняла свою величину и направление. Однако на практике многие машины или отделгл1ые их детали работают в условиях, когда действующие силы и моменты изменяются как по величине, так и по папраолению (знаку). В соответствии с этими изменениями будут меняться по величине и знаку вызываемые ими внутренние напряжения. Переменным нагрузкам подвергаются железнодорожные рельсы, валы двигателей, лопатки турбин и др. Особое значение в машиностроении приобрело периодическое (циклическое) динамическое нагружение, приводящее к периодическим (циклическим) изменениям напряжений. Число перемен N величины и знака напряжений может быть очень большим. Так, при вращении вала, нагруженного постоянной по величине и направлению силой Р, который непрерывно работает в течение 7 часов ежедневно, делая 400 об/мин, число перемен величины и знака напряжений в течение года равно  [c.51]

Прочность при динамически переменных нагрузках. Из изложенного в 59 видно, что динамические напряжения во многих случаях изменяются во времени периодически, многократно достигая наибольшей и наименьшей величины при больщой скорости изменения. Изменение напряжений от некоторого сгтах до Отш и снова до Сттах называют циклом напряжений. Поэтому динамические напряжения, изменяющиеся описанным выше образом, называют динамически переменными или циклическими. Как было установлено еще в первой половине XIX века, действие достаточно большого числа циклов таких напряжений вызывает разрушение при напряжениях, значительно меньших временного сопротивления. Это разрушение принято называть уста лостным разрушением. Первоначально усталостные разрушения связывали со структурными изменениями, происходящими при циклических напряжениях. В настоящее время установлено, что эти разрушения объясняются постепенным нарастанием местных нарушений прочности, образующихся вследствие концентрации напряжений вблизи внутренних факторов концентрации (дефекты структуры). Окончание такого процесса, носящего в основном характер местных сдвигов, сводится к настолько значительному росту образующейся трещины, что напряженное состояние приобретает объемный характер, и происходит хрупкое разрушение.  [c.442]


Для коррозионных испытаний с растягивающей нагрузкой образцов с толщиной, соответствующей или близкой реальным конструкциям, сконструирована [52] специальная установка (рис. 32). Испытываемый образец 10 с коррозионной ячейкой 11 закрепляется в тягах, соединенных с одной стороны с динамометром 10, а с другой — с силовым виетом 5. Опора 9 навинчивается на силовой винт 8 и, упираясь в короткое плечо силового рычага 7, растягивает динамометр 12 до создания в образце 10 определенного уровня напряжений. Заданный цикл изменения динамической составляющей при нагружении образца устанавливают изменением эксцентриситета кривошипа 1 при помощи ползуна 2 и длины шатуна 3 — с тендером. Вращение кривошипа 1, задаваемое на всех шести позициях установки одним электромотором, вызывает поступательное движение шатуна 3, который в свою очередь приводит в колебательное движение рычаг 4, при колебании которого подшипник качения 5 перемещается по опорной плоскости 6. Так как плоскость 6 прямолинейная, а не сферическая, перемещение по ней подшипника 5 вызывает смещение силового рычага 7 в направлении опорной плоскости. Движущийся силовой рычаг 7, воздействуя на опору 9, создает в образце циклические напряжения растяжения. Величина напряжения контролируется динамометром 4 Наибольшая нагрузка на образец может достигать 50 кН, переменная составляющая — до 50 кн. Приведенное устройство отличается от известных (например, [67]) простотой конструкции, отсутствием сложных систем электронной стабилизации скорости вращения двигателей. При его применении отпадает необходимость  [c.101]

Однако максимальный электрический сигнал, снимаемый с обоих датчиков, одинаков. В общем случае силоизмерительное устройство должно давать величину максимальной и минимальной нагрузок за цикл или амплитудное значение переменной нагрузки и величину и знак предварительной статической подгрузки. Если машина работает по симметричному циклу, достаточно знать только величину амплитуды нагрузок. К устройству для замера деформации предъявляются аналогичные требования. Кроме определения переменных сил, действующих на образец и величину деформации, вторичный прибор должен производить измерение величины усилия, действующего на образец в заданный момент цикла его деформирования. Для получения повышенной точности величину силы измеряют по нулевому методу отсчета с ручной компенсацией. Для обеспечения измерения динамических нагрузок нулевым методом применен безынерционный нуль-индикатор, в качестве которого используется осциллографическая электронная трубка. Нуль-индикатор позволяет фиксировать момент компенсации напряжения разбаланса мостовой схемы датчиков как на максимуме и минимуме циклической нагрузки,  [c.157]

Так как при колебаниях напряжения периодически изменяются по величине (рис. 13.19), то в случае длительного процесса расчет на прочность колеблющихся систем следует производить методами, установленными в расчетах при циклической нагрузке. При кратковременных колебательных процессах и когда амплитуда переменных напряжений (тахрд—ттрц /2 невелика, расчет на прочность можно производить по максимальным напряжениям, так же как и при постоянной нагрузке. Так как наибольшее динамическое обобщенное перемещение  [c.292]


Краткий курс сопротивления материалов Издание 2 (1977) -- [ c.442 ]



ПОИСК



Динамические и переменные напряжения

Напряжение динамическое

Напряжение циклическое

Напряжения переменные 380384 —

Переменная циклическая

Переменные динамические

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте