Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия световая — Единицы измерения

Для количественного анализа проблемы освещения необходимо знать единицы измерения. Освещенность могла бы определяться в ваттах на квадратный метр поверхности, но при этом не учитывалось бы свойство человеческого глаза по-разному воспринимать различную длину волн светового спектра. Для того чтобы учесть это свойство, была введена единица люмен (лм). Световой поток Ф источника света в люменах, имеющего спектр энергии РЩ в ваттах на единицу интервала волнового спектра, равен  [c.265]


Напомним, что лучистой называется энергия, передаваемая излучением. Измеряется энергия в самых различных единицах (эргах, джоулях и т. д.). В светотехнике пользуются другой физической величиной — лучистым потоком, который характеризует энергию излучения в единицу времени. Лучистый поток по аналогии с другими единицами мощности означает мощность лучистой энергии. Единицей измерения лучистого потока исходя из определения служит ватт, поэтому его применяют для характеристики ламп накаливания. Так как спектр излучения ламп накаливания неодинаков (он зависит от температуры нити), лучистый поток одной и той же мощности неодинаково воспринимается человеческим глазом. Поэтому одной из основных единиц в светотехнике является световой поток.  [c.201]

Световой поток F определяется как мощность лучистой энергии, оцениваемая по световому ощущению, которое она производит на человеческий глаз. Единицей измерения светового потока является люмен. Для воспроизведения единицы светового потока служит Государственный световой эталон.  [c.201]

Число основных единиц измерения может быть различным. При изучении механических явлений или тепловых явлений совместно с механическими обычно достаточно установить три основные единицы измерения. Например, в системе GS за основные единицы выбирают единицу длины (символ L), массы (символ М) и времени (символ Т). Тогда единицы измерения таких величин, как температура и количество тепла устанавливают, исходя из функциональных связей между тепловыми и механическими величинами. Единица измерения температуры, которая упоминалась выше, — электронвольт — возникает при измерении температуры в единицах энергаи. В электронвольтах обычно измеряют энергаю светового кванта Сф = Av, где v — частота  [c.29]

СВЕТОВАЯ ЭНЕРГИЯ, одна из осн. световых величин, равная произведению светового потока на длительность освещения. Единица С. э.— люмен-секунда (ЛМ"С). См. также Спектральная световая эффективность излучения. В системе энергетич. величин аналогичная величина — энергия излучения (лучистая энергия), единица измерения — Дж. Д- я. Лазарев.  [c.665]

В табл. 1.1 приведены энергетические и световые единицы измерения. В ряде случаев один и тот же поток (монохроматический или сложного состава) может быть выражен как поток энергии (в ваттах) или как световой поток (в люменах). Связь между ними устанавливается следующим образом.  [c.17]


В соответствии с этим при многочисленных световых измерениях необходимо принимать во внимание особенности глаза, заставляющие выделять определенный узкий участок длин волн из всего многообразия электромагнитных колебаний. Нередко термином свет называют именно узкий интервал, заключенный примерно между 400 и 800 нм. С этой точки зрения интерес представляет не просто восприятие энергии, а световое восприятие ее. Поэтому следует установить переход от энергетических величин к величинам, характеризующим световое восприятие, и целесообразно ввести специальную систему единиц, приспособленную к свойствам глаза человека.  [c.51]

Для измерения долговременной стабильности пользуются методами спектроскопии с временным разрешением. При этом получают плавную кривую зависимости длины волны от времени или ряд отдельных значений через определенные временные интервалы. Чтобы обеспечивалось нужное временное разрешение, светосила U спектрометра, т. е. световой поток на его выходе, отнесенный к единице яркости источника освещения, должна быть достаточно высокой, чтобы за время усреднения т на приемник попало достаточное количество световой энергии. Эта энергия равна Е = i BU, где В — обычно яркость эталонного источника, с которым сравнивают лазер.  [c.428]

Система, построенная на трех основных единицах, могла бы, разумеется, быть применена для любых других, в частности тепловых и световых, измерений, для чего следовало связать определяющими соотношениями соответствующие величины. Например, не составило бы труда сделать температуру производной величиной, используя ее связи с другими физическими величинами, такими, как средняя кинетическая энергия поступательного движения молекул идеального газа, плотность теплового излучения абсолютно черного тела и т. п. Однако чрезвычайно широкое распространение, которое имеет в науке, технике и повседневной жизни температура, делает практически целесообразным выделение ее в число основных величин. В светотехнике существенными являются величины, характеризующие субъективное восприятие света (сила света, освещенность, яркость). Поэтому использование при определении этих величин только энергетических параметров лишит их важнейшего качества — характеристики воздействия на наше зрение.  [c.38]

Внесистемные единицы. До настоящего времени находили широкое применение на практике некоторые единицы, не входившие ни в одну из систем. Эти единицы были введены в разное время из соображений удобства измерений соответствующих фактических величин в различных сферах деятельности человека. Например, для измерения длины применяют ангстрем, световой год, парсек площади — ар, гектар объема — литр массы — карат давления — атмосферу, бар, миллиметр ртутного столба, миллиметр водяного столба количества теплоты калорию электрической энергии — электрон-вольт, киловатт-час акустических величин — децибел, фон, октаву ионизирующих излучений — рентген, рад, кюри.  [c.26]

Фотометрией называется раздел оптики, охватывающий вопросы измерений энергии света при его излучении, распространении, поглощении и рассеянии. Ниже даются основные понятия фотометрии, т. е. понятия о световых измерениях и единицах, что необходимо для дальнейшего изучения сенситометрии.  [c.95]

Сравнительно недавно появились результаты измерений работы выхода отдельных кристаллических плоскостей вольфрама, полученные методом холодной эмиссии, столь же многочисленные, как и полученные с помощью термоэлектронной эмиссии. К сожалению, этот метод сталкивается, по-видимому, с большими трудностями, чем любой другой, и поэтому результаты нескольких ранних экспериментов должны игнорироваться, поскольку не все трудности в свое время были правильно оценены авторами. Под эту категорию подпадают работы Бекера [50], Уилкинсона [51] и Дайка и др. [52]. Все эти исследователи применяли разновидности простого по существу метода, состоящего в измерении яркости различных областей фосфоресцирующего экрана, соответствующих различным кристаллографическим направлениям острия эмиттера. Световая отдача фосфора калибровалась в единицах тока, падающего на единицу площади, для соответствующей области энергий электронов согласно теории Ноттингема [53]. В то время как правильность самой калибровки не вызывает сомнений, трудно быть уверенным в том, что свет, испускаемый некоторой областью экрана, целиком обусловлен возбуждением электронов с эмиттера, а не имеет какое-нибудь другое происхождение. Фактически во всех трех упомянутых выше экспериментах имелась возможность свечения экрана не только под действием вторичных электронов и мягких рентгеновских лучей, испускаемых различными областями трубки, но и под действием света, испущенного яркими облас-  [c.226]


Энергия потоков жчдкости несжимаемой—Поте1-и из-за трения 170 —Потери местные 172 --световая — Единицы измерения 23  [c.1007]

Световая энергия 314 Световой лоток 313, 314 Световые величины 314 Световые единицы измерения 314 Световые ггучки — Ограничение в оптических системах 322 Светосильные фотообъективы 335 Светящиеся составы — Продолжительность действия 315  [c.727]

ЭНЕРГЕТИЧЕСКАЯ ЭКСПОЗИЦИЯ (количество облучения, доза Н,) — отношение энергии dQ,. падающего на элемент поверхности излучения к площади dA этого элемента, Эквивалентное определение Э. э. есть произведение энергетической освещённости на длительность облучения dt. H, = dQJdA = E dt. Единица измерения 3. э.— Дж-м , В системе световых величин аналогичная Э, э. величина наз. экспозицией. Понятием Э. э. широко пользуются также при работе с корпускулярным излучением.  [c.613]

Чувствительность ПВ,ЧС определяется обычно величинами интенсивности /ц вли энергии а. соответствующими порогу отклика (пороговая чувствительность). и началу насыщения /н и я- В последнем случае получае.ч чувстви тельность по максимальному контрасту. Единицы измерения чувствнтельност были указаны в 1.2 Отметим, что н технике регистрации, воспроизведения и передачи видимых изображений до сегодняшнего дня используются не абсолют вые энергетические, а так называемые фотометрические единицы. Однозначная связь ежду двумя системами единиц устанавливается с поиошью нормализованной функции спектральной световой эффективности излучения лля стандартного фотометрического наблюдателя, рекомендованной Международной Комиссией по оптике и утвержденной в качестве стандарта в СССР и в большинстве стран [33]. В частности, эквивалентом светового ватта является в фотометрии люмеи. который определяется через максимальною световую эффективность r. ia за, равн ю 680 лм Вт-  [c.45]

J аиболее старый метод измерения энергии излучения в видимой области спектра — визуальный. Здесь приемником излучения служит глаз, а основным способом количественных измерений — визуальное уравнивание яркости двух фотометрических полей стандартного и измеряемого. При таких измерениях играет роль только та часть энергии излучения, которая непосредственно вызывает световое ощущение. Чувствительность среднего глаза к монохроматическому излучению разных длин волн характеризуется спектральной световой эффективностью, или видностью (см. кривую на переднем форзаце). Очевидно, что при измерениях энергии светового излучения, основанных на зрительных ощущениях, обычные энергетические характеристики излучения оказываются недостаточными. В таких случаях применяют специальные световые величины, базирующиеся на использовании установленного международным соглашением стандартного источника светового эталона) с определенным распределением энергии по спектру. В качестве эталонного выбрано излучение абсолютно черного тела (см. 9.1) при температуре затвердевания чистой платины (2042 К). Основной светотехнической единицей (входящей в число основных единиц СИ) установлена единица силы света J кандела (от лат. andela — свеча). Кандела (кд) —это сила света, испускаемого с 1/60 см поверхности эталонного источника в направлении нормали.  [c.69]

Французский ученый Ланжевен рассмотрел более важный в практическом отношении случай звукового давления на препятствие, находяш,ееся в открытом пространстве (случай радиометра). Из его рассмотрения следовало, что давление на препятствие, полностью поглощаюш,ее звук, точно равно энергии, приходящейся на единицу объема в падающем пучке звуковых лучей (так же как и в случае светового давления). Кажущееся несоответствие выводов Рэлея и Ланжевена было разъяснено французским физиком Бриллюэном, который указал, что рэлеевское давление состоит из двух отдельных частей. Первая часть соответствует ланжевеновскому давлению — это давление испытывает препятствие, иа которое падают звуковые волны — эта часть, таким образом, имеет направленный (векторный) характер. Другая часть — это возникающее гидростатическое давление во всех направлениях именно только это давление и испытывают боковые стенки трубы и оно представляет собой менее существенную часть давления звука. В открытом пространстве изменение давления компенсируется изменением объема, и мы имеем дело только с так называемым ланжевеновским давлением на стенку. Это направленное давление имеет, таким образом, одну и ту же величину в открытой и закрытой системе, чем объясняется правильность результатов измерений с радиометром.  [c.79]

Для единицы поверхностей плотности испускаемой световой энергии допускается также применение наименования радфот-секунда (грЬ-з, рф-с). При измерении поверхностной плотности получаемой световой энергии допускается применение единицы люкс-час (1х-Ь, лв-ч), равной 0,36 ф-с  [c.220]

Фотометрией называется раздел оптики, связанный с измерениями световых потоков, Строго говоря, фотометрия не относится к геометрической оптике, однако во многих практических приложениях приближенная геометрическая картина электромагнитного поля служит при фотометрических исследованиях достаточно хорошей основой, и поэтому целесообразно включить в настоящую главу краткое рассмотрение этого раздела. Ограничимся простой геометрической моделью, согласножоторой свет представляет собой поток лучистой энергии, распространяющийся вдоль геометрических лучей и подчиняющийся закону сохранения энергии. Последний состоит в том (см. уравнение (3.1.31)), что энергия, протекающая в единицу времени через любое поперечное сечение трубки лучей, остаегся постоянной.  [c.177]


Мы пользовались до сих пор для определения величины потока и всех связанных с ним величин обычными единицами энергии и мощности, например, джоулями и ваттами. Такого рода энергетические измерения и выполняются, когда приемником для света является универсальный приемник, например, термоэлемент, действие которого основано на превращении поглощенной световой энергии в тепловую. Необходимо, однако, иметь в виду, что гораздо чаще мы используем в качестве приемников специальные аппараты, реакция которых зависит не только от энергии, приносимой светом, но также и от его спектрального состава. Такими весьма распро-страненными селективными приемниками являются фотопластинка, фотоэлемент и особенно человеческий глаз, играющий исключительно важную роль и при повседневном восприятии света, и как приемник излучения во многих оптических приборах.  [c.51]

Системы, построенные на трех основных единицах, могли бы, разумеется, быть применены для любых других, в частности тепловых и световых, измерений, доя чего следовало связать определяющими уравнениями соответствующие величины. Например, не составило бы труда сделать температуру производной величиной, используя ее связи с другими физическими величинами, такими как средняя кинетическая энергия поступательного движения молекул идеального газа, плотность теплового излучешя абсолютно черного тела и т.п. Однако чрезвычайно щирокое распространение, которое имеет в науке, технике и повседневной жизни температура, делает целесообразным ее вьщеление в число основных величин. В течение длительного времени к числу основных величин относилось и количество теплоты,  [c.43]

С увеличением размеров блокирующего низкие частоты, зкрана, чго соответствует уменьшению зффективной апертуры и, следовательно, связано с необходимостью увеличения времени зкспонирования, плотность световой энергии в реконструированном поле остается практически постоянной. Об зтом свидетельствуют результаты измерения дифракционной эффективности [132] спеклограмм (рис. 44). Такой, на первый взгляд, неожиданный результат связан с тем обстоятельством, чго контраст регистрируемой совокупности пространственных несущих (спекл-структуры) не зависит от размеров апертуры фокусирующей системы. Это обусловлено тем, что степень пространственной когерентности излучения, формирующего сфокусированную спеклограмму, остается постоянной и близкой к единице, независимо от размеров диффузно рассеивающего объекта и апертуры изображающей системы.  [c.81]

Основные светотехнические величины и единицы их измерения. Световой поток (обозначение Ф). Подводимая к телам тепловая или электрическая энергия обычно преобразуется в электромагнитное излучение. Видимая часть такого излучения, т. е. лучистый поток, который воспринимается органом зрения человека как свет, принято называть световым потоком. Другими словами, световой поток — это мощность лучистой энергии, оцениваемая по световому ощущению, которое она производит на средний (среднестатический) человеческий глаз (орган зрения).  [c.201]

Вольфрамовые лампы накаливания, калиброванные но излучению абсолютно черного тела, являются хорошими вторичными световыми эталонами. Однако можно пользоваться и пекалибро-ваппыми лампами, если фотометрические спектральные измерения необходимо провести пе в абсолютных, а в относительных единицах. В этом случае относительное раснределение энергии по спектру вольфрамовой лампы рассчитывается по формуле Вина или Планка, если измерена цветовая температура нити накала. Последнее легко выполняется с помощью микропирометра, который снабжен проградуированной по абсолютно черному телу эталонной лампой.  [c.230]

Фотоэлектрические приемники также характеризуются довольно резко выраженной спектральной кривой абсолютной чувствительности. В этом случае величина спектральной чувствительности определяет тот фототок, который возникает в цепи фотоэлемент — гальванометр при падении иа светочувствительную поверхность элемента потока лучистой энергии данной длины волны мощностью 1 вт. Поэтому абсолютная спектральная чувствительность фотоэлементов должна измеряться в микроамперах на ватт падающего монохроматического излучения. Одна1 о в силу сложности таких измерений, требующих энергетических оценок лучистого потока, чатце всего измеряют относительную спектральную чувствительность, а вместо абсолютной чувствительности определяют для каждого фотоэлемента только его интегральную чувствительность. Оценивают ее по общей величине фототока, возникающего в цепи при воздействии на фотоэлемент белого света определенной интенсивности. При этом лучистый поток определяют пе в энергетических единицах, а в светотехнических единицах светового потока — люменах, и стандартизуют источник света. В качестве такого стандартного источника света л СССР принята 100-ваттная газонолная лампа накаливания МЭЛЗ с вольфрамовой питью, цветовая температура которой прп нормальном режиме накала лампы составляет 2848° К. Все значения интегральной чувствительности фотоэлектрических приемников относятся к указанной температуре источника.  [c.285]

Энергетический выход. Одной из важнейших характеристик люминесцентных свойств системы является энергетический выход, т. е. отношение мощности люминесценции к мощности поглощения. Ранее считалось, что энергия, поглощаемая люминесцирующими объектами, в основном превращается в тепло и лишь небольшая её часть возвращается в виде люминесценции. Однако для целого ряда систем потери световой энергии сравнительно незначительны и энергетический выход может быть достаточно высок. Первое экспериментальное доказательство этого было дано в 1924 г. С. И. Вавиловым, исследовавшим свечение флуоресцеина в ряде растворителей. Он показал, что при возбуждении светом со сплошным спектром энергетический выход флуоресценции равен 0,71. Последующие более точные измерения привели к тем же результатам. В ряде случаев энергетический выход близок к единице.  [c.25]

Основное свойство рецепторов сетчатки — световая чувствительность, т. е. способность, поглощая свет, инициировать первую ступень сложного зрительного процесса. Чувствительность фоторецепторов к свету чрезвычайно велика рецептор способен генерировать импульс возбуждения при поглощении всего нескольких, быть может только двух, фотонов [5, 38, 42]. Но вероятность того, что фотон будет поглощен светочувствительным веществом рецептора, в сильной сгепени зависит от энергии фотона, т. е. 01 частоты или длины волны излучения. Зависимость вероятности поглощения фотона от длины его волны лежит в основе световой фотометрии, обуславливая способ пересчета энергетических величин в световые, прежде всего мощности излучения Р (Вт) в световой поток ср (лм). Первые фотометрические измерения, еще в ХУП в. [22] проводились при достаточной освещенности, когда хорошо различаются цвета, т. е. когда работают колбочки. Поэтому основные фото.метрические величины были установлены для дневного, колбочкового зрения. В основу была положена единица силы света — свеча. Сначала это была просто свеча типа восковой или стеариновой, потом старались обусловить материал и диаметр свечи, затем воспроизводили эталон в виде пламенной лампы с определенными конструкционными ее параметрами (свеча Гефнера). В двадцатом веке световые эталоны были созданы в виде ламп накаливании. Во второй половине нашего столетия в основу эталона силы света было положено излучение черного тела при температуре затвердевания платины. Сила света одного квадратного сантиметра черного тела при температуре 2042 К принята равной 60 свечам или по современной терминологии 60 канделам (60 кд) [34]. Устройство первичного светового эталона достаточно сложно.  [c.37]



Смотреть страницы где упоминается термин Энергия световая — Единицы измерения : [c.27]    [c.4]    [c.205]    [c.500]    [c.147]    [c.41]    [c.825]   
Краткий справочник машиностроителя (1966) -- [ c.14 ]



ПОИСК



224 — Единицы измерени

Единицы измерения

Измерение энергии

Измерения световые

Световая энергия

Световые единицы

Световые единицы измерения

Энергия единица измерения

Энергия — Единицы

Энергия — Единицы измерени



© 2025 Mash-xxl.info Реклама на сайте