Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача граничная (краевая) пластичности

В первой и во второй частях книги получены 29 уравнений, содержащие только упомянутые 29 величин, которые характеризуют напряженно-деформированное состояние. Следовательно, получена замкнутая система уравнений теории пластичности. Она представляет собой математическую модель упруго-пластической деформации. Напряженно-деформированное состояние в любом процессе обработки металла давлением (при прокатке, волочении, прессовании и др.) удовлетворяет этой системе уравнений. Поэтому ее недостаточно для достижения указанной цели теории пластичности. При интегрировании системы дифференциальных уравнений появляются новые постоянные и функции координат и времени, для определения которых нужны дополнительные уравнения, конкретизирующие процесс. Это уравнения, описывающие начальное состояние тела в момент времени f (начальные условия), и уравнения, отображающие взаимодействие деформируемого тела с окружающей средой (граничные условия). Совокупность начальных и граничных условий называется краевыми условиями. Они определяют пространственно-временную область, в пределах которой происходит исследуемый процесс обработки металла давлением, и вместе с замкнутой системой уравнений теории пластичности образуют краевую задачу. Ее решение, т. е. результат интегрирования замкнутой системы уравнений при заданных начальных и граничных условиях, представляет собой математическую модель рассматриваемого процесса (прокатки, волочения, прессования и т. д.) в виде 29 функций координат  [c.233]


На основании формул (2.3.1) и граничных условий на контурах круговых отверстий и на полосах пластичности задача сводится к определению двух аналитических в области D функций 0(z) и (z) из краевых условий  [c.129]

Математическая П. т. Матем. задача П. т. сводится к разысканию компонентов вектора перемещения, тензора деформации и тензора напряжений как ф-ций координат и времени, к-рые при заданных в объёмах тела массовых силах и темп-ре, усилиях на одной части граничной поверхности и перемещениях на другой части поверхности должны удовлетворять дифф. ур-ниям движения (или равновесия), ур-ниям связи между деформациями и перемещениями, ур-ниям связи между напряжениями деформациями и темп-рой (законам пластичности), граничным и нач. условиям. Система этих ур-ний составляет краевую задачу П. т.  [c.547]

Интегральные представления комплексных потенциалов Ф (г) и Y (г) (1.145) являются общим решением двумерной бигармони-ческой задачи, содержащим две произвольные комплексные функции g (/) и q (/) (или четыре действительные функции), что позволяет с их помощью изучать самые разные краевые задачи для областей с разрезали . В частности, удовлетворив с помощью представления (1.145) и формул (1.26), (1.30), (1.42) граничным условиям плоской задачи теории упругости для бесконечной плоскости с разрезами, когда на одном берегу разреза заданы смещения, а на другом — напряжения, найдем сингулярные интегральные уравнения второго рода. При использовании условий неидеального контакта упругих тел, когда напряжения и смещения берегов разреза связаны линейными зависимостями (см. [40, 172, 175, 261]), легко получить сингулярные интегро-дифференциальные уравнения типа Прандтля для тел с тонкостенными упругими включениями 238]. Интегральные представления могут быть использованы при решении различных смешанных задач для тел с разрезами, задач о полосах пластичности, моделируемых скачками перемещений [23], и др.  [c.38]

Вторая из математических задач Коши (если бы вектор п однозначно определялся на граничной поверхности) ставилась бы, как это следует из условия п ь = О, на характеристической поверхности и, следовательно, ее формулировка былы бы некорректной решения такой задачи либо вообш,е бы не суш,ествовало, либо если бы решение суш,ествовало, то оно было бы заведомо неединственным. Однако физическое краевое условие не определяет однозначно вектор п, устанавливая лишь только то, что вектор п ориентирован произвольно в касательной к граничной поверхности плоскости. Подобная неопределенность ориентации вектора п на граничной поверхности часто позволяет использовать начальное условие именно второго типа при решении краевых задач математической теории пластичности. Подробное исследование этой ситуации имеется в [ ], с. 242, 243. Однако даже в этом случае, если удается построить поле напряжений, соответствуюгцее ребру призмы Треска, то, как следует из результатов раздела, поле напряжений необходимо будет расслоенным, правда, сама граничная поверхность уже не будет слоем поля п.  [c.48]


При выводе уравнения (XIV.50) использованы дифференциальные уравнения движения, уравнение неразрывности, связи между скоростями деформаций и скоростями перемещений, начальные условия, кинематические и динамические граничные условия, включая условия трения, а также уравнения состояния. Методами вариационного исчисления можно показать, что из уравнения (XIV.50) следует краевая задача теории пластичности. Действительно, осуществим варьирование в уравнении (XIV.50), учитывая все ограничения, накладываемые на вариации, и приведем его к независимым вариациям. После этого на основании основной леммы вариационного исчисления можно получить все уравнения и условия, перечисленные выше. Таким образом, решение краевой задачи в дифференциальной форме эквивалентно исследованию на стационарное состояние функционала I, заклю ченногов фигурные скобки в (XIV.50).  [c.315]

О численной минимизации функционалов теории пластичности. Она осуществляется с применением современных быстродействующих ЭВМ. Вопросам численной реализации вариационных методов посвящены монографии С. Г. Михлина и Б. Е. По-бедри. Широко применяются методы конечных и граничных элементов. Математические вопросы методов решения краевых задач теории пластичности подробно изложены также в работе Г. Я. Гуна [3].  [c.321]

Анализ деформирования и разрушения композитов включает в себя описание изменения деформационных свойств и накопления повреждений в компонентах композитов, предшествующих макроразрушению. В настоящей главе рассмотрены определяющие соотношения, описывающие деформирование анизотропных, в частных случаях, ор-тотропных, трансверсально-изотропных и изотропных сред, построенные с использованием тензора поврежденности четвертого ранга. Использована теория пластичности анизотропных сред, предложенная Б.Е. Победрей [203, 204]. Рассмотрено применение совокупности критериев для моделирования актов разрушения по различным механизмам. Предложено использование в задачах механики деформирования и разрушения структурно-неоднородных сред граничных условий контактного типа, козффициенты которых могут трактоваться как интегральные жесткостные характеристики механических систем, передающих нагрузки деформируемым телам, но непосредственно не включаемых в постановки краевых задач. Это позволяет более адекватно описать реальные условия нагружения и учесть факторы, играющие, как будет показано в дальнейшем, определяющую роль в формировании условий макроразрушения.  [c.101]

Николаев О. П., Хутор янский Н. М. О применении проекционного итерационного метода решения парного граничного интегрального уравяения основной смешанной краевой задачи теории упругости. — Прикладные проблемы прочности и пластичности. — Всеооюз. межвуз. сб./Горьк. ун-т, tl983, с. 571-61.  [c.288]


Смотреть страницы где упоминается термин Задача граничная (краевая) пластичности : [c.288]    [c.134]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.40 , c.44 ]



ПОИСК



I краевые

Задача граничная (краевая)

Задача краевая



© 2025 Mash-xxl.info Реклама на сайте