Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия микроорганизмов

Участие в процессе коррозии микроорганизмов снимает известные ограничения по условиям его протекания (температуре и влажности). Бактерии, например, могут стимулировать процессы биокоррозии в широких интервалах температур грибы — широком интервале относительной влажности более 30 % — гидрофиты, 10. .. 30 % — мезофиты, менее 10 % — ксерофиты.  [c.67]

Различие в природе электролитов может создать разность электродных потенциалов металлов в 0,3 в. Имеются указания, что различие в степени аэрации вызывает еще большую э. д. с., равную 0,9 в. Все эти причины, а в ряде случаев действие находящихся в грунте микроорганизмов способствуют разрушению подземных металлических сооружений. Развитию коррозии подземных сооружений также способствует наличие на их поверхности прокатной окалины. В отдельных случаях разность потенциалов между окалиной и основным металлом достигает 0,45 в. На процессы подземной коррозии оказывают влияние самые разнообразные факторы, к числу которых относятся, помимо указанных выше, температура, электропроводность, воздухопроницаемость грунта, состав грунтовых вод и др. Поэтому очень трудно выделить и изучить влияние каждого фактора в отдельности.  [c.184]


Наростообразование может происходить одновременно с Другими процессами. Так, например, корпуса морских судов одновременно с коррозией обшивки подвергаются интенсивному наращиванию различных водорослей и микроорганизмов, что изменяет параметры судна (его ход).  [c.88]

Титан очень стоек к коррозии и эрозии и допускает высокие скорости воды (примерно 9 м/с). Микроорганизмы могут влиять на него при умеренных скоростях воды, но это не приводит к образованию коррозионных язв. Титан дорог и имеет низкую теплопроводность, но изготовленные из него трубки при малой толщине стенок (примерно 0,5 мм) могут конкурировать с трубками из других материалов, пригодных при работе в сильно агрессивных водах.  [c.57]

В последние годы по мере возрастания объема производства и применения лакокрасочных материалов выяснилось во многих случаях для того чтобы лакокрасочные покрытия защищали изделие от коррозии химической или электрохимической, они сами должны быть защищены от коррозии микробиологической. Под этим видом коррозии понимают разрушение материалов, обусловленное действием различных микроорганизмов, населяющих воздух, воду и землю. Как утверждает статистика, из-за микробиологической коррозии (часто ее называют просто биокоррозией) лакокрасочные покрытия, особенно в условиях повышенной влажности и температуры, значительно быстрее выходят из строя, чем под действием лишь химических агрессоров.  [c.74]

Достается от микроорганизмов не только уже сформированному лакокрасочному покрытию, но и краскам еще в емкости, особенно если эти краски содержат в своем составе воду, а такие краски особенно перспективны. Следовательно, биологическая коррозия — один  [c.74]

Большие убытки причиняет. биокоррозия и нефтедобытчикам, поскольку микроорганизмы, развивающиеся при контакте буровых вод со сталью, вызывают интенсивную коррозию труб.  [c.77]

В основных направлениях экономического и социального развития СССР на 1981—1985 годы и на период до 1990 года указывается на необходимость увеличения долговечности машин, оборудования и сооружений. Сохраняемость техники зависит от эффективности мероприятий по защите конструкций от коррозии, старения и биоповреждений. Известно, что большинство процессов коррозии металлов и старения полимеров связано с воздействием микроорганизмов.  [c.3]

Коррозионные эффекты при участии микроорганизмов аналогичны другим видам коррозии. Например, подобно локальной сосредоточенной коррозии в результате биоповреждений образуются блестящие или шероховатые плоские малозаметные углубления, особенно под шламом или тонкими окисными пленками, а также раковины различной глубины под слоем продуктов коррозии. Характерные признаки биоповреждений различных материалов приведены в табл. 3.  [c.21]


Лакокрасочное покрытие (ЛКП) Пятна на поверхности, образование бугристости визуально заметный налет, развитие микроорганизмов внутри пленки и под ней изменение физике-механических свойств покрытия (потеря эластичности, прочности, вздутия, отслаивания, растрескивание) образование и накопление продуктов коррозии под пленкой (pH водной вытяжки до 1) сквозные питтинги в пленке покрытия То же  [c.22]

Объекты Коррозия Основные группы микроорганизмов  [c.25]

Изучалось влияние аэробной микрофлоры в речной воде на скорость коррозии [7]. Появление нового деполяризатора — микроорганизмов — стимулирует процесс коррозии в связи с накоплением ионов Н О+ в продуктах метаболизма  [c.28]

Затем при возрастании концентрации бактерий (более 10 клеток/мл) скорость коррозии уменьшается в результате потребления кислорода и выделения углекислого газа аэробными бактериями. Кроме того, колонии микроорганизмов на металле образуют фазовые слои, препятствующие диффузии кислорода к поверхности металла. Такие слои не являются сплошными, поэтому равномерная коррозия может перейти в более опасный вид — локальную коррозию. Скорость локальной коррозии во времени снижается  [c.28]

Развитие микроорганизмов происходит в основном при хранении СОЖ или при остановках циркуляционных систем. Интенсифицируют жизнедеятельность микроорганизмов отсутствие аэрации н света, повышение температуры, попадание загрязнений — пыли, металлических частиц. Высокая жесткость воды (до 0,1 г/л в пересчете на карбонат кальция) ингибирует рост микроорганизмов [30]. Развитие микроорганизмов в СОЖ снижает их технологические свойства и мол<ет привести к коррозии станочного оборудования предприятий промышленности.  [c.43]

Органические кислоты, продуцируемые грибами, с одной стороны, повышают агрессивность среды, стимулируя процессы коррозии металлов и деструкцию полимеров, с другой — служат источником углерода для дальнейшего развития микроорганизмов.  [c.53]

Эффект повреждаемости микроорганизмами озм (по аналогии с эффектами коррозии о)к и старения озс). Под влиянием факторов среды при участии микроорганизмов (Хм) за определенный промежуток времени Ат происходят необратимые изменения в материале  [c.67]

Скорость процесса биоповреждения определяется аналогично скорости коррозии металлов и старения полимеров Ос и характеризуется эффектом повреждаемости микроорганизмами в единицу времени Ом=Юм/Ат.  [c.67]

Зарубежные специалисты считают [45], что более 50 % коррозионных повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит в результате появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение защитных пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррозии также способствует неравномерность распределения колоний микроорганизмов, образование сероводорода, сульфидов, ионов гидроксония, гидрат-ионов и т. п. в условиях, казалось бы, исключающих появление этих соединений. Постоянная изменчивость микроорганизмов, миграция катодных и анодных фаз, сочетания аэробных и анаэробных процессов приводят к появлению значительных коррозионных эффектов и создают предпосылки к возникновению отказов. Участие в процессе коррозии микроорганизмов снимает известные ограничения условий его протекания по  [c.54]

Микроорганизмы, находящиеся в большом количестве в почвах и грунтах, могут вызывать значительное местное ускорение коррозии металлов, в частности стали (рис. 278). Наибольшую опасность представляют анаэробные сульфат-редуцируюш,ие бактерии, которые развиваются в илистых, глинистых и болотных грунтах, где возникают анаэробные условия. Зти бактерии в процессе жизнедеятельности восстанавливают содержащиеся в грунте сульфаты, потребляя образующийся при катодном процессе водород, до сульфид-ионов с выделением кислорода  [c.388]


Известное влияние на процессы подземной коррозии металлов оказывают микроорганизмы, продукты жизнедеятельности которых могут в значительной степени ускорить разрушение металлических ко11струк]гт"1.  [c.189]

П1юцеесы бактериальной коррозии могут протекать в аэробных и анаэробных условиях. Наиболее характерные случаи усиления коррозии железных конструкций под влиянием жизнедеятельности бактерий наблюдаются в анаэробных условиях. Микроорганизмы. могут оказать непосредственное влияние на катодные или анодные электрохимические процессы, могут изменить физико-химические свойства грунта и, следовательно, ее агрессивность, а в некоторых случаях могут разрушать защитные по-крьдия.  [c.189]

Мерами борьбы с коррозией, вызываемой микроорганизмами, помимо обычно применяющихся защитных покрытий и катодной защит1)1, является также добавлен 1е различных ядов, оетанавли-иающих /1ЛП ограничивающих жизнедеятельность микроорганизмов.  [c.197]

Алюминиевые емкости для хранения авиационных топлив подвергаются коррозии в результате развития в керосинах микроорганизмов [12—15]. Основную роль среди этих микроорганизмов играет гриб ladosporium resinae [12]. Возможность и место протекания микробиологических процессов определяют в первую очередь температура и наличие воды. Рост микроорганизмов начинается на границе раздела топлива и воды, адсорбированной на. поверхности металла. В результате на поверхности бака образуется слой гриба. Скорость роста этого слоя контролируется температурой она максимальна при 30—35 °С. Последующую коррозию объясняют действием водорастворимых органических кислот, которые образуются в результате метаболизма микроорганизмов. Она может быть также следствием недостатка кислорода над растущим слоем гриба (элементы дифференциальной аэрации). Коррозию такого типа можно устранить, добавляя в топливо биоциды [12].  [c.346]

На атмосферную коррозию существенно влияют твердые частицы, осаждающиеся на поверхности металла частички почвы, угля и вьтет-риваемых горных пород продукты сгорания топлива микроорганизмы и др. В некоторых случаях удаление этих частиц приводит к резкому уменьшению коррозии. Усиление коррозии осаждающимися на поверхности металла твердыми частицами, даже если они не обладают коррозионно-активными свойствами, связано с тем, что они способствуют адсорбции такого агрессивного агента, как сернистый газ, и, кроме того, образуют с поверхностью металла тонкие щели и зазоры, в которых реакции ионизации металла протекают с большей скоростью, чем на поверхности, к которой имеется свободный доступ кислорода.  [c.9]

С начала 70-х годов в качестве изолирующего покрытия для защиты внешней поверхности труб от коррозии (особенно труб большого диаметра) вместо применяемых покрытий на битумной основе используют покрытие на основе полиэтилена, наносимое различными способами. Полиэтиленовые покрытия имеют преимущества по сравнению с покрытиями на битумной основе. Они хорошо сохраняются в.условиях значительного перепада температур, обладают высокой механической прочностью, стойкостью при во члексгвнях агресотных , з и,ч венной коррозии и микроорганизмов, а также стойки в атмосферны.ч условиях нефтяных и газовых сред. Преимущество этого типа покрытия  [c.135]

В этот период пластовые давления снижаются, повышаются скорости газовых потоков, что позволяет ингибитору распространяться в пласте на большие расстояния. По мере отбора газа из скважины ингибитор должен постепенно десорбироваться из пласта, обеспечивая защиту оборудования от коррозии и микроорганизмов. В случае, если невозможна закачка в пласт, используют распьшение ингибитора в газовый поток скважины в период отбора газа из газохранилища.  [c.179]

Щелевая коррозия происходит не только в конструктивных зазорах и щелях, но и во вновь возникающих в процессе эксплуатации изделиях, например, при обрастании конструкций микроорганизмами, при отс лаивании покрытий, осаждении песка и ила, при неудовлетворительной сварке и т.п.  [c.203]

В морских условиях на поверхности склеиваемых участков свай образуются также продукты коррозии и откладываются микроорганизмы. Все указанные вещества, скапливающиеся на поверхности свай, нарущают сплошность покрытия и понижают его эффективность.  [c.129]

Микроорганизмы изменяют химический состав среды, окружающей подземное сооружение, и активизируют электрохимические реакции, ускоряющие развитие коррозии. В грунтовых условиях наблюдается аэробная коррозия, вызванная деятельностью аэробных бактерий, живJщ иx и размножающихся при отсутствии свободного кислорода за счет энергии расщепления различных химических соединений.  [c.9]

Бактерии, грибы, актиномицеты инициируют и стимулируют процессы коррозии и старения продуктами своей жизнедеятельности, а при прямом или комбинированном воздействии (совместно с другими факторами среды) вызывают особый вид разрушения материалов и покрытий — биоповреждения. В настоящее время отечественные и зарубежные исследователи подчеркивают, что биоповреждения представляют собой эколого-технологическую проблему. Она является комплексной в научном плане и многоотраслевой — в практическом. Основа научных исследований проблемы базируется на законах биологии и химии, материаловедческих и природоведческих дисциплинах. Рациональная борьба с биоповреждениями немыслима без изучения экологии микроорганизмов, особенностей их существования, а также без знаний физико-химических свойств материалов и условий эксплуатации машин, оборудования и сооружений, без понимания вопросов природоиспользования и необходимости защиты природы от загрязнений. За несколько миллиардов лет эволюции жизни на земле микроорганизмы получили способность быстрой адаптации к изменяющимся условиям их обитания и источникам питания. Только этим можно объяснить активность ряда микроорганизмов в отношении созданных человеком конструкций, приводящую к разрушению последних.  [c.3]

Значительная часть одноклеточных и многоклеточных микроорганизмов принимает активное участие в процессах разрушения материалов конструкций и сооружений. Они стимулируют известные процессы коррозии металлов и старения полимеров, а отдельные виды могут вызывать специфические разрушения — био-110В )е>,ч,тсния. —..." -----------  [c.5]


По характеру действия ферменты обладают строгой специфичностью, которая обусловлена структурным соответствием между молекулами субстрата и фермента. Каждый из них катализирует определенную химическую реакцию. На течение последних влияют условия среды (температура, pH, наличие химических соединений, облучение) и присутствие других ферментов [26]. Под действием факторов среды могут синтезироваться и новые ферменты. Их называют адаптивными, так как они позволяют микроорганизмам приспосабливаться к новым условиям. Ферменты, которые участвуют во внутриклеточных процессах,, называют эндоферментами, а ферменты, выделяемые микроорганизмами в окружающую среду, — экзоферментами. Последние могут являться биоцидами для других микроорганизмов или стимулировать процессы коррозии и биоповреждений материалов техники и сооружений. Каталитическая активность ферментов во много раз превышает неорганические катализаторы. Например, 1 мг железа, входящего в состав фермента каталазы, эквивалентен каталитическому действию 10 т железа в составе неорганического соединения при разложении перекиси водорода, air амилазы может превратить 1 т крахмала в сахар при соответствующих условиях.  [c.14]

Литотрофные микроорганизмы принимают прямое участие в образовании полезных ископаемых (самородная сера, селитра, пирит, газ). Эти же микроорганизмы участвуют в разрушении металлоконструкций, стимулируя процессы перехода в более устойчивое состояние или инициируя процессы коррозии металлов и разрушения полимерных и неорганических материалов, образуя агрессивные среды.  [c.26]

Другие исследователи считают, что высокая коррозионная активность СВБ связана с интенсификацией катодного процесса, обусловленного потреблением атомарного водорода по важнейшей для микроорганизмов реакции 50 4-1-+ 8Н->-52"-1-4Н20. Сульфид ионы, образующиеся по этой реакции, могут ускорять развитие коррозии, однако в деаэрируемых нейтральных растворах в присутствии СВБ этого не происходит (Уб = 0,12 мкм/год). Скорость коррозии существенно возрастает в присутствии элементарной серы [47]. Предположитель-ио, последняя выполняет роль, аналогичную растворенному кислороду в аэрируемых электролитах. Течение процесса зависит от скорости диффузии элементарной серы к поверхности металла, т. е. от интенсивности перемешивания раствора. При отсутствии последнего сера распределяется неравномерно, и наступает локальная коррозия (рис. 12).  [c.27]

Нефтяные топлива подвержены биоповреждениям при хранении, транспортировании и эксплуатации. Особенно нестойки к биоповреждениям топлива, предназначенные для летательных аппаратов. Стимулируют биоповреждения топлив повышенная температура (более 20 °С), загрязнения, попадающие в емкости, накопление воды. Более благоприятные условия для развития микроорганизмов создаются в зоне раздела топливо — вода. Это наблюдается в хранилищах топлив происходит порча топлив, коррозия емкостей. Оптимальное значение pH среды для развития микробов в топливах 7...7,5, при рН процесс биоповреждений топлив практически прекращается. Наибольший рост бактерий и грибов-окислителей углеводородов наблюдается в интервале тем-Хператур 25...40°С. Однако существуют психрофильные и термофильные микроорганизмы, разрушающие топлива.  [c.42]

Четвертый этап — воздействие продуктов метаболизма, образующихся в результате жизнедеятельности колоний микроорганизмов, на материал конструкции (кислотное, щелочное, окислительное и ферментативное). Несоверщенные грибы (аэробные гетеро-трофы) стимулируют коррозию металлов следующим образом.  [c.53]

Исследования микроорганизмов включают идентификацию их до вида исследование морфологических, культуральных и физиологических признаков характер взаимодействия с другими видами, родами и группами определение адаптации и особенностей изменчивости исследование продуктов метаболизма изучение биохимических особенностей и эффектов воздействия на различные материалы исследование условий стимулирования и подавления развития, выявление биоцидов и биостатических веществ определение опасности для человека и теплокровных принятие рещения о депонировании и использовании микроорганизмов в качестве тест-культур для испытания биостойкости материалов и покрытий, в качестве продуцентов, стимулирующих или ингибирующих повреждения материалов (коррозию, старение и т. п.) определение целесообразности патентования и стандартизации новых щтаммов культур с учетом их полезных свойств.  [c.60]

Исследования биоцидов включают изучение физико-химических свойств вещества, выбираемого в качестве биоцида определение его токсичности в отнощении микроорганизмов, теплокровных и человека оценку стабильности вещества и длительности сохранения биоцидных свойств, возможности нейтрализации определение характера воздействия на материалы конструкции (ингибитор стимулятор коррозии, старения и пр.) изучение более сложных физических моделей (биоцид — микроорганизм, биоцид-— материал, биоцид — среда, биоцид — человек) и, возможно, изучение комплексной модели, включающей перечисленные (рис. 25). Последнее предпочтительнее, поскольку позволяет решать проблемы защиты металлоконструкций от биоповреждений с учетом требований, выдвигаемых другой суперглобальной проблемой человек — биосфера, и особенно остростоящими требованиями раздела этой проблемы загрязнение среды.  [c.60]

О биостойкости материалов можно судить по действию на них ферментов тех микроорганизмов, которые идентифицированы в данных условиях эксплуатации. Коррозию металлов в этом случае называют микробиогенной (или ферментативной). Целесообразно проверять стабильность материалов относительно определенных классов ферментов (дегидрогеназы, оксидазы, гидролазы и др.). Эти испытания можно отнести к ускоренным или экспресс-методам. Так как ферменты действуют на материалы быстрее, чем микроорганизмы, возможно увеличение концентраций ферментов для интенсификации процесса возможно моделирование условий ферментативных реакций и выявления действительного характера процесса (при сравнении с протекающими в реальных условиях) возможна оценка ингибиторного действия биоцидных веществ [7, с. 68].  [c.76]

Ассоциации микроорганизмов, включающие аммонифицирующие (10 клеток/мл), денитрифицирующие (10 ) бактерии и СВБ (10 ), разрушают бетон, содержащий ингибиторы коррозии.  [c.85]

Коррозионная стойкость металлов и покрытий может быть повышена применением металлов и покрытий, устойчивых против атмосферной коррозии металлических покрытий, которые являются ядами для микроорганизмов (цинк, свинец) или продукты окисления которых являются биоцидами (окислы меди и др.) снижением шероховатости и очисткой поверхности металлов от загрязнений всех видов использованием в растворах, предназначенных для нанесения металлических и конверсионных покрытий, биоцидных веществ (борная кислота и ее соли, полиамины и поли-имины, оксихинолин и его производные и т. п.) и удаление из растворов веществ, которые могут адсорбироваться на поверхности и в порах покрытия и служить питательной средой для микроорганизмов (декстрин, крахмал, столярный клей, сахара, аминокислоты, цианиды и т. п.).  [c.89]


Смотреть страницы где упоминается термин Коррозия микроорганизмов : [c.13]    [c.8]    [c.197]    [c.35]    [c.10]    [c.77]    [c.4]    [c.9]    [c.21]    [c.36]   
Коррозионная стойкость материалов (1975) -- [ c.60 , c.61 ]



ПОИСК



Защита от коррозии при воздействии микроорганизмов (А. А. Герасименко)

Микроорганизмы

Роль микроорганизмов в коррозии металлов



© 2025 Mash-xxl.info Реклама на сайте