Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Низкочастотные материалы

Низкочастотные материалы с диэлектрической проницаемостью выше 1000  [c.76]

Наиболее общими требованиями такого рода являются для низкочастотных материалов — наибольшая достижимая величина диэлектрической проницаемости при заданном значении ее темпе-178  [c.178]

Выше отмечалось, что независимое вычисление излучательных свойств реальных материалов является безнадежной задачей. Однако в соответствии с законом Кирхгофа задачу можно свести к проблеме вычисления поглощения. Эта проблема, по-видимому, проще, так как она имеет отношения к взаимодействию внешнего электромагнитного поля с электронами в твердом теле. Подробное обсуждение этого вопроса не входит в круг задач данной книги, поскольку результаты вычисления поглощательной способности в термометрии используются редко. Однако качественные расчеты поглощательной способности металлов и диэлектриков могут быть сделаны, в частности, в низкочастотной области, где применима классическая электромагнитная теория. Точность результатов такого расчета свойств индивидуальных материалов для оптической термометрии недостаточно высока. Хороший обзор оптических свойств металлов и диэлектриков сделан в работе [84].  [c.326]


Рис. 7.34. Добротность низкочастотных резонаторов из различных материалов о — алюминиевый сплав (А1-5056) Д — Nh [ бЭ — Si [2701 V — АЬОз [271]. Темные значки — Г-ЗОО К, светлые Т = 4,2 К Рис. 7.34. Добротность низкочастотных резонаторов из различных материалов о — <a href="/info/29899">алюминиевый сплав</a> (А1-5056) Д — Nh [ бЭ — Si [2701 V — АЬОз [271]. Темные значки — Г-ЗОО К, светлые Т = 4,2 К
Основу низкочастотной керамики составляют титанат бария ВаТЮз и твердые растворы на его основе. Эти материалы отличаются высокими значениями диэлектрической проницаемости и ее нелинейной зависимостью от напряженности электрического поля.  [c.242]

Керамические материалы подразделяются на конденсаторные высокочастотные (тип А), конденсаторные низкочастотные (тип Б), установочные высокочастотные (тип В) и установочные низкочастотные.  [c.144]

Рис. 10 4. Температурная зависимость е низкочастотных керамических конденсаторных материалов Рис. 10 4. <a href="/info/191882">Температурная зависимость</a> е низкочастотных керамических конденсаторных материалов
В низкочастотной области нагружения при нагреве титановых сплавов ВТЗ-1 и ВТ-9 имеет место устойчивое формирование усталостных бороздок. Испытания круглых образцов с частотой нагружения 1 Гц были проведены по пульсирующему циклу нагружения на материалах после стандартных режимов термообработки (рис. 7.5). При нагреве более заметное снижение в долговечности получено для сплава ВТ-9. Сопоставление кинетики усталостных трещин для различных уровней долговечности свидетельствовало об устойчивом формировании преимущественно усталостных бороздок в изломе. Качественно полученные кинетические кривые не отличались от аналогичных зависимостей шага бороздок от длины трещины в области многоцикловой усталости (рис. 7.6). Расчет  [c.347]

Нагружение материала ЗК с частотами в несколько тысяч герц связано с возрастанием скорости изменения нагрузки в цикле, которая может стать соизмерима со скоростями ударного нагружения материала. Процессы релаксации подводимой энергии в цикле нагружения к материалу не успевают проявить себя в полной мере при высокой скорости деформации. Применительно к пластичным материалам влияние возрастания скорости деформации на развитие усталостных трещин выражено в подавлении механизма формирования усталостных бороздок, типичного для низкочастотной области нагружения (см. главу 6).  [c.681]


Одним из способов смещения частоты максимального звукопоглощения в низкочастотную область является создание воздушного промежутка за волокнисто-пористым материалом. Звуковые волны, падающие на жесткую отражающую поверхность, совместно с отраженными волнами образуют систему стоячих волн. Ближайшая пучность колебательной скорости находится на расстоянии V4 длины волны X от отражающей поверхности. Максимальное поглощение звука наблюдается в случае, когда середина волокнисто-пористого мате-риала находится в пучности колебательной скорости, т. е.  [c.63]

Временной теневой метод основан на измерении времени пробега импульса через объект. Путь ультразвукового луча SDR, огибающего дефект (рис. 2.13), больше прямого пути SOR. По запаздыванию прихода сквозного сигнала на приемник с помощью низкочастотных волн удается определить наличие крупных дефектов в материалах с большим рассеянием ультразвука, например аустенитной стали с крупнозернистой структурой, чугуне и ряде неметаллов. Контроль подобных материалов другими акустическими методами оказывается вообще невозможным.  [c.119]

Эти опыты показали, что низкочастотные транзисторы могут работать после облучения интегральным потоком быстрых нейтронов 10 — 10 нейтрон см , если допустимо некоторое изменение параметров схемы. Нужно учесть, что для испытания были выбраны такие материалы и конструкции транзисторов, которые обеспечивают высокую радиационную-стойкость этих транзисторов, например германий с диффузионной базой, обеспечивающий высокое значение предельной частоты передачи тока.  [c.290]

В случае анодных заземлителей станций катодной защиты, изготовленных из пассивируемых материалов, к качеству накладываемого постоянного тока особых требований не предъявляется при платинированных анодах положение получается несколько иным. Результаты прежних исследований [23—25], по которым при остаточной пульсации выпрямленного постоянного тока свыше 5 % потеря платины значительно увеличивается, пока продолжают обсуждаться, но не во всех случаях подтверждены. Всестороннего исследования причин и проявлений коррозии платины до настоящего времени, очевидно, еще не проведено. В принципе требования к величине коэффициента остаточной пульсации выпрямленного тока по-видимому должны повышаться с увеличением действующего напряжения и должны зависеть также и от эффективности удаления продуктов электролиза или от обтекания анодов. Однако повышенная скорость коррозии при низкочастотной остаточной пульсации (менее 50 Гц) может считаться доказанной. Уже начиная с частоты 100 Гц влияние остаточной пульсации невелико. Между тем именно в этом диапазоне частот получается остаточная пульсация тока мостовых преобразователей, работающих на переменном токе 50 Гц после трехфазных преобразователей эта частота намного выше (300 Гц), а величина остаточной пульсации выпрямленного тока по условиям схемы составляет 4 %. Опыт показал, что при оптимальных условиях работы анодов влияние остаточной пульсации невелико.  [c.205]

В гл. 7 мы указывали на связь между магнитной проницаемостью и механическими напряжениями. Возможность количественной оценки остаточных напряжений в ферромагнитных материалах высказывалась многими исследователями Л. 2, 5]. Имеются работы по оценке этих напряжений с помощью низкочастотных электромагнитных приборов с проходной катушкой, дающих интегральную характеристику состояния образца по всему периметру на сравнительно большую глубину [Л. 47]. Определенные возможности здесь открывает применение приборов с накладной катушкой, работающих на частотах от 1 до 2 000 кгц [Л. 9, 29]. Механические воздействия вызывают в поверхностном слое ферромагнитного металла структурные изменения, которые фиксируются этими приборами. Изменения происходят в очень тонком слое, обычно не превышающем 20 мкм, где и появляются очаги будущих трещин.  [c.158]

Одним из важных факторов, оказывающих значительное влияние на процесс усталостного разрушения металлов, является скорость циклического нагружения. Однако в литературе приводятся сведения об изменении структуры материала в основном при низкочастотном (от долей до единиц Гц) нагружении. Количество публикаций, в которых рассматривается роль частоты в изменении структуры и разрушении на звуковых и ультразвуковых частотах, невелико [1—3]. Одна из причин состоит в том, что при высокочастотных испытаниях большинство материалов значительно разогревается, Б результате чего их структура претерпевает необратимые изменения. Сплавы титана вследствие низких уровней рассеяния энергии даже при значительном увеличении частоты нагружения макроскопически не разогреваются.  [c.361]


В результате исследований и разработок низкочастотных ультразвуковых преобразователей и аппаратуры стала возможна реализация низкочастотного эхо-импульсного метода [35 ] при контроле физико-механических характеристик, дефектоскопии и толщинометрии изделий из полимерных композиционных материалов, вследствие получения упругих импульсов малой длительности и существенного повышения направленности в режиме излучения и приема.  [c.87]

Анализ полученных таким образом результатов дает основание отметить, что для всех исследованных материалов энергия, рассеянная за цикл, монотонно возрастает с увеличением напряжений как при низкочастотных, так и при высокочастотных испытаниях.  [c.77]

Dr — удельная энергия, рассеянная в материале за цикл, при напряжениях, равных ограниченному пределу усталости на базе 10 циклов для низкочастотных испытаний и на базе 10 циклов для высокочастотных испытаний.  [c.80]

Термическая усталость — малоцикловая низкочастотная усталость, которая характеризуется тем, что возбуждение переменных температурных остаточных напряжений в материале обусловливается циклическим изменением температуры.  [c.234]

Керамические материалы. Керамические материалы находят широкое применение в качестве изоляторов. Изоляторный фарфор относится к керамическим низкочастотным материалам. Его получают путем обжига специальной глины, кварцевого песка и щелочного полевого шпата. Другие разновидности фарфора (по степени улучшения их электрических свойств) радиофарфор и ультрафарфор. Последний является высокочастотным диэлектриком с малыми диэлектрическими потерями и высокой механической прочностью. Получают ультрафарфор на основе корунда (высокотемпературной а-модификации окиси алюминия).  [c.256]

Низкочастотные материалы 1—280 Никелебериллиевые сплавы 2—290 Никелевая бронза, коррозия 2—6 Никелевая латунь 2—291, 81 Никелевая медь 2—156 Никелевые поковки 3—5 Никелевые покрытия 1—93  [c.511]

Поведение металлических материалов в условиях, когда низкочастотная составляющая нагружения, как правило, является расчетной и носит статический или повторно-статический характер, а дополнительные высокочастотные нагрузки и вибрация имеют несущественную но сравнению с расчетной нагрузкой амплитуду, изучено достаточно широко, особенно влияние поли-частотного (в частности, двухчастотного) на1ружения на усталостные характеристики. Показано, что и на стадии зарождения, и на стадии развития усталостных трещин наложение высокочастотной составляющей значительно со-крагцает циклическую долговечность материала. Причем результат воздействия такого нагружения превышает результат простого сложения амплитуд низкочастотной и высокочастотной нагрузок.  [c.98]

Наибольшей механической прочностью обладают материалы из полимеров резольного типа с длинноволокнистым наполнителем. Наиболее высокими электрическими параметрами — материалы высокочастотного назначения из ани-линфенолформальдегидного полимера с наполнителями кварц и слюда, tg б при 50 Гц обычно определяют для материалов, предназначенных для электроизоляционных низкочастотных деталей, tg б и е, при 10 Гц —для деталей высокочастотного назначения. Наибольшее значение теплостойкости по Мартенсу имеет материал на основе резольного полимера с асбестовым волокнистым наполнителем. Модификация фенолформальдегидных полимеров полиамидами, поливинилхлоридами и синтетическим каучуком улуч- нает некоторые параметры, например удельную ударную вязкость, влагостойкость. Материалы на основе анилинфе-ыолформальдегидного полимера в эксплуатации не выделяют аммиака,< что иногда имеет место с материалами на чисто фенольных смолах. Повышенную механическую прочность имеет материал на основе модифицированного фенол-формальдегидного связующего с наполнителем из длинных стеклянных волокон. Эта масса марки АГ-4 широко используется для изготовления сравнительно крупных коллекторов без миканитовых манжет.  [c.200]

Высокочастотные керамические материалы, используемые преимущественно в радиотехнике, p lздeляют по основному назначению на три типа А — высокочастотные для конденсаторов, Б — низкочастотные для конденсаторов, В — высокочастотные для установочных изделий и других радиотехнических деталей.  [c.238]

Радиокерамические материалы с зависимости от назначения изготовляются следующих типов А — высокомастотные для конденсаторов Б — низкочастотные для конденсаторов В — высокочастотные для установочны.х изделий н других радиоте.хннчески.х деталей. Для каждою типа изготовляют материалы различны.х классов и групп с определенными техническими показателями. Химический состав и исходные сырьевые материалы не предусматриваются.  [c.172]

Для ряда материалов в области МНЦУ при частотах более 10 Гц не наблюдается зависимость СРТ от частоты нагружения [24], но при переходе к низкочастотному нагружению начинается влияние частоты на СРТ. Аналогичные результаты получены и для Ti-сплавов [89]. Испытания сплава Ti-6Al-4V-2Sn при частотах 0,2 и 2 Гц показали [90], что низкая частота приводит преимущественно к хрупкому разрушению с образованием фасе-  [c.363]

Термическая (/сгалостб — малоцикловая низкочастотная усталость, которая характеризуется тем, что возбуждение переменных температурных напряжений в материале обусловливается циклическим изменением температуры. Величина напряжений и деформаций при термоусталостном нагружении зависит от характеристик теплопроводности, теплопередачи и термического расширения материала.  [c.263]

Для эффективного возбуждения пьезопластины необходимо, чтобы собственная частота / толщинных колебаний пьезоэлемента совпадала с частотой электрических колебаний т. е. f = f . Это условие обеспечивается, когда толщина пьезопластины h = = %J2 = j 2f), где и Сд — соответственно длина волны и скорость звука в материале пьезопластины, а соотношение 2а//г л 20. Пьезопластина, параметры которой удовлетворяют этим требованиям, обеспечивает максимальную амплитуду излученного импульса при прочих равных условиях. В серийных преобразователях, работающих на частоте 2,5 МГц и выше, выполняются оба условия, тогда как в преобразователях с более низкой частотой выполняется только первое условие. Например, в преобразователях на частоту 0,2 МГц 2а/Л л 4, и для выполнения условия 2ajh = 20 необходимы пьезоэлементы диаметром 150 мм. Поэтому для обеспечения второго условия низкочастотные преобразователи часто выполняют в виде пакетов, склеенных из нескольких пьезопластин, электрически соединенных между собой параллельно (рис. 3.2). При этом суммарная толщина пакета h должна удовлетворять условию h = KJ2 = j 2f). Число пластин в пакете выбирают с учетом конкретного типа электрического генератора. Например, в режиме излучения увеличение числа пластин (при заданной частоте / это эквивалентно уменьшению их толщины) ведет к повышению напряженности электрического поля в каждой из них. Однако при этом увеличивается общая емкость преобразователя, растет нагрузка на электрический генератор и, как результат, падает возбуждающее напряжение. При одном и том же значении af чувствительность многослойных преобразователей значительно ниже, чем однослойных. Конструкция многослойных преобразователей достаточно сложна, так как к каждой пластине необходимо подвести электрическое напряжение, для чего между ними помещают фольгу, к которой припаивают подводящие провода.  [c.140]


На рис. 2 для металлических конструкционных материалов представлены графики, характеризующие влияние частоты симметричного циклического однородного растяжения — сжатия на относительные значения предела выносливости. При этом значения ст 1, взятые на базе 100 млн. циклов на одной из частот циклического нагружения, отнесены к значению предела прочности Ов, определенному при обычной скорости рас-тяигения на стандартных образцах. В таблице даны значения обычных частот в диапазоне 7-о11 по кривым усталости проводилась экстраполяция последних до базы 10 циклов Высокочастотные усталостные испытания велись на базе 10 —10 циклов на образцах с диаметром рабочей части около 6—7 мм в условиях водяного (для черных металлов) или воздушного (для легких сплавов) охлаждения [2]. Критерием усталостного разрушения образца во время обычных низкочастотных испытаний было его окончательное разрушение, а для высокочастотных испытаний — появление достаточно развитой усталостной трещины (глубиной 2—3 мм), вызывающей заметное снижение резонансной частоты продольных колебаний образца.  [c.333]

У Коррозионная усталость может быть двух видов мнргоцик-ловой и малоцикловой. Многоцикловая усталость проявляется при деформировании мета ша в пределах упругих деформаций. Количество циклов до разрушения образца (детали) обычно в этом случае достаточно велико. Малоцикловая усталость — деформация и разрушение материалов под действием низкочастотных повторных нагрузок высокой интенсивности (материал нагружается уже в зоне пластических деформаций). При таком виде нагруженш металл разрушается быстрее и количество циклов до разрушения будет, естественно, меньше (не более 10 ), Малоцикловая усталость наблюдается, например, в момент посадки самолета.  [c.48]

Проведен анализ флуктуаций во всем диапазоне измеряемых токов при минимальном значении тока 20 нА для автокатодов из углеродных материалов различный структуры, а именно из одиночных фибрильных волокон типа ВМН-РК с температурой отжига 2000 °С, из пучков волокон типа ВМН-4 общим диаметром 100 мкм, из пластинок пирографита толщиной 100 мкм и длиной 3 мм, стержней из графита МПГ-6 сечением 1 х 1 мм. Расстояние анод—катод устанавливалось визуально на уровне 2 мм для катодов из одиночных волокон и 0,2—0,5 мм для катодов из остальных материалов. Оказалось, что все полученные спектры подчиняются закону l//gr, аналогичному частотной зависимости спектральной плотности некоторых низкочастотных шумов [285, 291].  [c.225]

Применяемые для экспериментов другие устройства имели небольшие усилия. Только в одном известном нам случае удалось получить с помощью механического дисбалансного привода динамическую нагрузку до 40 10 Н [32]. Значительную часть исследований проводили на низкочастотных специальных испытательных прессах (до 5—8 Гц), применяемых в лабораториях сопротивления материалов. Эти прессы, как уже упоминалось, ввиду особенности их схемы, сложности и дороговизны малопригодны для промышленной эксплуатации.  [c.136]

Наиболее интенсивно в последнее время продвигаются разработки аморфных материалов для сердечников низкочастотных (50—. 60 Гц) трансформаторов. Как видно из табл. 10.4, основной характерной особенностью аморфных магнитных сплавов является, то, что потери энергии на перемагничивание в сердечнике, связанные с вихревыми токами, крайне малы вследствие высокого значения удельного электросопротивления и малой толщины ленты. Данное обстоятельство можно эффективно использовать. Так, потери в сердечниках из аморфного сплава Fe8iBi3Si4 2 составляют 0,06 Вт/кг, т. е. примерно в двадцать раз ниже, чем потери в текстурованных листах трансформаторной стали.  [c.301]

В процессе резания возникают низкочастотные (50—500 Гц) и высокочастотные (800—6000 Гц) автоколебания переменной амплитуды в результате упругих деформаций системы СПИД при изменении сил резания. Изменение сил резания обусловлено непостоянством размера припуска, нестабильностью свойств обрабатываемого материала, образованием наростов, элементных стружек и стружек надлома. Низкочастотные колебания вызывают волнистость поверхности детали, а при высокочастотных колебаниях на поверхности образуется рябь, в обоих случаях шероховатость поверхности возрастает. Автоколебания снижают стойкость инструмента, особенно из твердых сплавов, керамики и сверхтвердых материалов. Возникновение автоко-  [c.571]

Анализ влияния амплитудно-частотных соотношений и формы низкочастотного цикла на величину Konset позволил установить, что для исследуемых материалов значение Konset уменьшается по мере увеличения соотношения амплитуд (рис. 98).  [c.166]

Влияние соотношения частот и формы низкочастотного цикла на Konset ДЛЯ исследованных материалов имеет место при < 0,2.  [c.168]


Смотреть страницы где упоминается термин Низкочастотные материалы : [c.40]    [c.135]    [c.240]    [c.204]    [c.244]    [c.148]    [c.25]    [c.397]    [c.88]    [c.43]    [c.657]    [c.60]   
Конструкционные материалы Энциклопедия (1965) -- [ c.280 ]



ПОИСК



Керамические радиотехнические материал низкочастотные

Магнитомягкие материалы для постоянных и низкочастотных магнитных полей

Низкочастотные конденсаторные материалы

Низкочастотные магнитомягкие материалы



© 2025 Mash-xxl.info Реклама на сайте