Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение в конструкции предельное

В последние годы в Советском Союзе расчет строительных конструкций производят методом расчетных предельных состояний, разработанных советскими учеными проф. Н. С. Стрелецким, проф. А. А. Гвоздевым и др. Специфика этого метода заключается в особом подходе к определению расчетных нагрузок и расчетных сопротивлений элементов конструкций. Усилия же, возникающие в конструкции, и ее перемещения в целях упрощения расчетов обычно определяются по упругой стадии, т. е. в предположении, что напряжения в конструкции не превышают предела пропорциональности.  [c.600]


В результате местного усиления можно достигнуть снижения массы на 15—25%. Обычно для усиления какого-либо участка предварительно отвержденные полоски композиции наклеивают на фланцы крышки изделия. При этом достигается экономия расходов, так как сокращается общая потребность в композиции, упрощается его формовка и раскрой. Надежность возрастает, так как армирующие полоски имеют очень простую геометрию и изготовляются почти в идеальных условиях. Во многих случаях металлические детали конструируются исходя из допустимых напряжений выборочная армировка материала позволяет достигать в конструкции предельных напряжений. В связи с этим риск, связанный с использованием композиционных материалов, очень невелик. В конструкциях такого типа можно пользоваться обычными металлическими соединениями — сваркой либо клепкой. При этом надежность может быть существенно повышена вследствие значительного технологического опыта, приобретенного в части получения таких соединений в аэрокосмической технике. И, наконец, уменьшается риск срыва графика выпуска изделия. Если изделие, целиком изготовленное из композиционных материалов, не выдерживает приемные испытания, то переход на металлоконструкции может потребовать отсрочки несколько месяцев. Если же какая-либо деталь с местным усилием не проходит статические, циклические испытания или испытания на ползучесть, рабочий чертеж может быть легко переработан с целью увеличения сечения по металлу.  [c.103]

Повышение эксплуатационных температур и скоростей их изменения приводит к существенному увеличению термомеханических напряжений в конструкциях. В связи с этим увеличивается число отказов вследствие накопления предельных повреждений, в том числе вызванных циклическими температурными воздействиями. Такие отказы характерны для тонкостенных оболочечных корпусных элементов мощных стационарных паровых и газовых турбин, ракетных двигателей, нестационарных газотурбинных установок и т. д. Как правило, эти конструкции имеют фланцевые переходы от детали к детали.  [c.171]

Ввиду хрупких разрушений крупных конструкций возникла необходимость разработки различных методов расчета конструкций для предотвращения их разрушений. Хрупкие разрушения могут происходить при низких напряжениях, значительно меньших тех напряжений, которые вызывают текучесть материала конструкции и допускаются расчетными нормами. Поэтому необходимо внести изменения или дополнения в обычные методы расчета, с помош ью которых определяют предельную нагрузку, не вызываюш,ую чрезмерную текучесть материала или его окончательное разрушение. Из разных способов, применяемых для уменьшения возможности разрушения при низком напряжении, можно выделить две основные группы 1) способы, связанные с различными аспектами конструирования, позволяюш ими снизить уровень концентрации локального напряжения 2) способы, связанные с различными стадиями изготовления, позволяюш ими уменьшить уровень внутренних напряжений в конструкции или вероятность разрушения конструкции с дефектами, которые могли действовать как концентраторы напряжения для инициирования треш ины. Однако основными способами является выбор конструкционного материала с достаточной вязкостью разрушения, способного сопротивляться разрушению при низких напряжениях.  [c.211]


В некоторых случаях работоспособность конструкции определяют не величиной предельной нагрузки или предельного напряжения, а величиной предельной деформации 1АЛ. В этом случае из уравнения (9.4) находят фактическую деформацию и сопоставляют ее с предельной  [c.141]

Для сложного напряженного состояния подобный метод оценки прочности непригоден. Дело в том, что для одного и того же материала, как показывают опыты, опасное состояние может наступить при различных предельных значениях главных напряжений Ох, Оз и 03 в зависимости от соотношений между ними. Поэтому экспериментально установить предельные величины главных напряжений очень сложно не только из-за трудности постановки опытов, но и вследствие большого объема испытаний. В случае сложного напряженного состояния конструкции рассчитывают на прочность, как правило, на основании теоретических разработок с использованием данных о механических свойствах материалов, получаемых при испытании на растяжение и сжатие (иногда используют также результаты опытов на кручение). Только в отдельных случаях для оценки прочности конструкции или ее элементов прибегают к моде-  [c.195]

Выше были рассмотрены основные вопросы, связанные с расчетом на прочность упругих элементов конструкций, испытывающих действие статических нагрузок. При этом всегда считалось, что прочность элементов будет обеспечена, если максимальные напряжения в их опасных сечениях не превышают предельных значений.  [c.222]

Однако, как установлено практикой, в случае действия на элементы конструкций нагрузок, периодически изменяющихся во времени по величине или по величине и направлению, разрушение материала происходит при напряжениях, значительно меньших предельных значений. С подобными действиями нагрузок приходится встречаться, как правило, при расчетах движущихся элемен-  [c.222]

При расчете по допускаемым напряжениям опасным, или предельным, состоянием конструкции считается такое ее состояние, при котором наибольшее напряжение хотя бы в одной точке материала конструкции достигает опасной величины — предела текучести (для пластичного материала) или временного сопротивления (для хрупкого материала). Состояние всей остальной массы материала во внимание не принимается.  [c.487]

Расчеты по предельным состояниям широко применяются при проектировании строительных конструкций и сооружений. Все большее распространение методы этих расчетов получают и в машиностроении, причем и здесь сказывается их прогрессивная роль они позволяют вскрыть резервы прочности, не используемые при расчетах по допускаемым напряжениям. Расчет по предельным состояниям дает возможность уменьшить вес конструкций.  [c.488]

На основании анализа конструкции выявляется та точка в теле, где возникают наибольшие напряжения. Найденная величина напряжений сопоставляется с предельной величиной для данного материала, полученной на основе предварительных лабораторных испытаний. Из сопоставления найденных расчетных напряжений и предельных напряжений делается заключение о прочности конструкции.  [c.27]

В связи с возникновением в работающей конструкции пластических деформаций весьма существенным является вопрос общих принципов ведения расчета. При пластических деформациях нельзя, как правило, пользоваться методом расчета по допускаемым напряжениям. В этом случае о пригодности конструкции судят либо по величине возникающих перемещений, либо же по величине предельной или разрушающей нагрузки.  [c.355]

При расчетах конструкций на прочность наиболее широко распространенным является метод расчета по напряжениям. В духе этого метода и были изложены все предыдущие главы курса. Однако, как уже говорилось, этот метод не является единственным. В ряде случаев более предпочтительно ведение расчета по разрушающим или предельным нагрузкам, от которых рабочие нагрузки составляют некоторую часть.  [c.373]

Очевидно, что в конструкциях напряжение не должно достигать предельного значения, а должно составлять только часть его. Это необходимо для того, чтобы сооружение могло работать безопасно и было достаточно долговечным.  [c.204]


Однако это особенно актуально для предельно нагруженных конструкций (например, турбины), где рабочие температуры составляют 500—2000 °С, а механические нагрузки приближаются к пределу прочности материалов. Для большинства же практических применений ЭМУ температуры и механические нагрузки далеки от предельных, влияние напряжений и деформаций на распределение температур мало, и им можно пренебречь. Это позволяет независимо найти температуры в конструкции, а уже вторым шагом определить напряжения и деформации, вызванные этим распределением.  [c.120]

Решение. Разгружение системы, испытывающей действие силы Р, экий-валентно наложению двух состояний системы. Одно из них соответствует нагружению заданной силой Р, а другое — силой, равной Р, но имеющей противоположное направление (-Р). Действительные усилия в элементах системы равны алгебраической сумме усилий при указанных нагружениях. Заметим, что при действии силы —Р на конструкцию, находящуюся в предельном состоянии [усилия во всех элементах равны (рис. б)], стержни деформируются упруго при изменении напряжений в пределах от до —aj при этом максимальное сжимающее усилие в стержнях равно Л/макс = — 2(З Р.  [c.32]

Расчеты на прочность, рассматривавшиеся в предыдущих главах пособия, выполнялись по допускаемым напряжениям (по опасной точке). Напомним, что при таком подходе к расчету прочность конструкции считается нарушенной, если хотя бы в одной ее точке (опасной) расчетное напряжение (в общем случае эквивалентное напряжение по принятой для расчета гипотезе прочности) окажется равным предельному напряжению (а или а. , или ао.г). Соответственно, в качестве допускаемой нагрузки конструкции принимается такая нагрузка, при которой расчетное напряжение в опасной точке конструкции  [c.273]

Указанное совпадение получается, в частности, для конструкций, элементы которых с позиций расчета по допускаемым напряжениям являются равнопрочными, т. е. напряжения, равные допускаемым (или предельным) возникают одновременно во всех совместно работающих элементах. Соответствующий пример приведен на рис. 11-5. Нетрудно убедиться, что при любом значении силы Р (независимо от координаты с) напряжения в стержнях / и 2 одинаковы и при возрастании силы Р текучесть возникает одновременно в обоих стержнях, Т. е, Р . / пред  [c.277]

Рассмотрим процесс монотонного увеличения нагрузки Р от нуля в конструкции по рис. 3.6. В этом случае напряжение 0(3) растет быстрее, чем напряжение 0(1). Рано или поздно напряжение 0(3) достигает предела текучести Оу. Среди инженеров-машиностроителей такое состояние считается предельным, а соответствующая нагрузка — предельной Р ре . Допускаемая нагрузка принимается  [c.85]

Предельное равновесие трещиноподобных дефектов в конструкции при заданных условиях эксплуатации определяется сопротивлением разрушению (трещиностойкостью) материала, из которого она изготовлена. В качестве меры трещиностойкости применительно к наиболее опасным и распространенным трещинам нормального отрыва чаще всего используют критическое значение коэффициента интенсивности напряжений Ki , соответствующее моменту старта трещины при соблюдении в ее вершине условий плоской деформации.  [c.740]

На основании анализа конструкции выявляют ту точку в теле, где возникают наибольшие напряжения. Найденное значение напряжений в этой точке сопоставляют с предельным значением для данного материала, полученным на основе предварительных лабораторных испытаний. Из сопоставления найденных расчетных и предельных напряжений делают заключение о прочности конструкции.  [c.34]

В связи со сказанным в некоторых случаях используют метод расчета по разрушающим нагрузкам. В этом методе путем расчета определяют не напряжения, а находят предельную нагрузку, которую может выдержать конструкция, не разрушаясь или не изменяя существенно свою форму. Предельную (разрушающую) нагрузку сопоставляют с рабочей, и на основании этого делают выводы о степени прочности конструкции в рабочих условиях. Этот метод обладает тем недостатком, что расчетное определение разрушающей нагрузки возможно только в наиболее простых конструктивных схемах.  [c.35]

Таким образом, наличие в конструкции начальных напряжений (монтажных, температурных, вызванных осадкой опор, и др.) не влияет на предельную нагрузку аналогично, предельная нагрузка не зависит от наличия в конструкции начальных зазоров (исчезающих при воздействии внешней нагрузки), от податливости опорных закреплений Е  [c.588]

Как известно, при динамическом нагружении деталей и конструкций, содержащих трещину, образующиеся волны отражаются и преломляются на трещине, вызывая более высокие напряжения, чем в случае статического нагружения. Решение динамической задачи для цилиндра полезно сопоставить с результатами 19 (которые должны получаться в результате предельного перехода) для выявления влияния импульсного характера нагружения на динамический коэффициент интенсивности напряжений. Заметим, кроме того, что найденное в этом параграфе решение эквивалентно решению задачи о внезапном появлении трещины в бесконечном цилиндре в случае приложения статического крутящего момента.  [c.417]

При использовании метода расчета по предельному состоянию следует иметь в виду, что некоторые из ранее изложенных гипотез неприменимы. Например, не выполняется принцип независимости сил, поскольку конструкция находится в упруго-пластическом состоянии. Распределение напряжений в сечениях и величина внутренних усилий зависят от принятой аппроксимации. При разгрузке статически неопределимых систем в них образуются остаточные усилия, если в одном или всех элементах имело место предельное состояние, т. е. напряжения достигали предела текучести.  [c.173]

На рис. 14,9 дана зависимость предельного напряжения для стержня из стали СтЗ от его гибкости. Кривая 1 (гипербола Эйлера) построена по соотношению (14.31) для упругого состояния. Для очень гибких стержней (>. > 100) потеря устойчивости наступает при напряжениях ниже предела текучести, т. е. устойчивость является критерием работоспособности конструкции. Если через Хц обозначить гибкость стержня, при котором напряжения в нем достигнут предела пропорциональ-  [c.237]


В этих неравенствах Отах — наибольшее напряжение в наиболее напряженных элементах и сечениях конструкции. Напряжения сг , о назовем предельными. Будем обозначать любое предельное напряжение индексом lim (например, сг, == Оцт). По ряду причин, о которых будет сказано ниже, всякий теоретический расчет является в какой-то мере приближенным. Поэтому выполнение критерия  [c.157]

При проектировании элемента конструкции необходимо определить размеры, обеспечивающие его безоиаснуго работу при заданных нагрузках. Для успешного решения этой задачи необходимо исходить из того, чтобы наибольи]ее расчетное напряжение в Honepe4HOiM сечении элемента конструкции, возникшее при заданной нагрузке, было ниже того предельного напряжения, при котором возникает опасность появления пластической деформации или опасность разрушения.  [c.170]

Анализ работ /22, 60, 71 — 73 и др / показал, что несущая способность тонкостенных оболочковых конструкций, ослабленных мягкими прослойками, определяется соотношениями типа (2.3) — (2.4) при замене в них Og или (о — предел прочности материала оболочки) на некоторую величину а р, характеризующ> ю величину уровня предельных напряжений в стенке оболочки, приложенных в направлении поперек прослойки и соответствующих момент потери пластической Стой-чивости рассматриваемых конструкций  [c.86]

Используя результаты, полученные для случая полной реализации контактного у прочнения мягких прослоек, работающих в составе оболочек давления в условиях двухосного нагружения , можно оценить уровень средних предельных напряжений в стенке конструкции СТ(.р, характеризующий их несущую способность по критерию потери пластичес-  [c.121]

Последнее обстоятельство является весьма важным и свидетельств) -ет о том, что при выборе того или иного присадочного материала необходимо предварительно знать, обеспечивается ли при заданных параметрах сварного соединения (А д, к) и >словиях нагружения оболочковой конструкции п (или типе оболочки) требования по запасу пластичности металла шва Лр. В противном случае при экспл> атации конструкции в наиболее нагр женной части мягкого шва может произойти локальное разрушение (Л = Лр), что приведет к разрушению всей конструкции. С точки зрения силового подхода данные условия сводятся к тот, чтобы в процессе нагружения сварных конструкций, ослабленных мягким швом, наибольшие напряжения в центральной части шва не превышали своего предельного значения — сопротивления микросколу определяющегося ресурсом пластичности металла /129/. Характеристика не зависит от температу ры и скорости нагружения и нашла хорошее практаческое применение при анализе разрушения материалов в у словиях их апастического деформирования /130, 131/. В работе /129/ нами была установлена связь данной силовой характеристики с ресурсом пластичности металла в виде  [c.195]

Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]


Смотреть страницы где упоминается термин Напряжение в конструкции предельное : [c.205]    [c.30]    [c.92]    [c.38]    [c.28]    [c.297]    [c.90]    [c.92]    [c.185]    [c.255]    [c.63]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.48 ]



ПОИСК



Конструкция напряжений

Напряжение предельное



© 2025 Mash-xxl.info Реклама на сайте