Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бериллий производство металла

В перспективе значительно усиливаются взаимосвязи между энергетикой и производством сырьевых материалов. Это можно видеть на примере термоядерной энергетики. Ее развитие потребует резкого увеличения производства ряда ограниченных по нынешним представлениям цветных и редких металлов молибдена, ванадия, бериллия, лития, ниобия и т. д. Возможность значительного увеличения производства этих и других сырьевых ресурсов для крупномасштабного развития новых источников энергии, в свою очередь, во многом зависит от допустимости и стоимости энергии.  [c.25]


Электролиз расплавленных солей сделал возможным промышленное производство алюминия, магния и натрия. Кроме того, этим способом получают и такие металлы, как барий, бериллий, бор, кальций, церий, ниобий, литий, редкоземельные металлы, стронций, тантал, торий и урап. Успех электролитического производства алюминия и магния способствовал интенсификации исследований по разработке подобного дешевого способа и для промышленного производства титана и циркония. Однако этим способом, видимо, можно получать только порошковые металлы, что оставляет нерешенными задачи достижения высокой степени чистоты и получения металлов в компактном виде.  [c.21]

В каждой гидрометаллургической схеме производства бериллия предусматриваются специальные операции по удалению из растворов таких примесей, как железо, марганец, тяжелые металлы, бор и ряд других элементов. Операции очистки часто заключаются в перекристаллизации соединений и достаточно громоздки. Ионообменные методы в этом случае могут быть достаточно эффективными. Условия очистки и типы ионообменных смол могут быть выбраны на основании многочисленных литературных данных по сорбции бериллия и элементов Периодической системы из растворов различного химического состава анионитами и катионитами [39, 109, 112]. С помощью ионного обмена могут быть решены также многие задачи, связанные с удалением бериллия из различных сточных вод и технологических отходов.  [c.122]

При Производстве отливок из цветных сплавов в качестве шихтовых материалов используют первичные цветные металлы, которые являются основой или легирующими компонентами сплавов, — алюминий, магний, медь, марганец, никель, кремний, цинк, олово, свинец, висмут, титан, кобальт, литий, бериллий, кадмий, сурьма, хром, ниобий, вольфрам, ванадий, цирконий, тантал, редкоземельные металлы (церий, неодим, лантан и др.)  [c.129]

Механические свойства бериллия зависят от чистоты металла, технологии производства, размера зерна. После горячего прессования при исходной крупности порошка менее 70 мкм Ов = 240-300 МПа, 6 = 1-2 %. Свойства горячевы-давленного бериллия значительно вьппе — Ов- 500-700 МПа и 5 = 7-10 %. Деформированные полуфабрикаты имеют развитую текстуру деформации, вызывающую сильную анизотропию свойств.  [c.636]

Механические свойства бериллия зависят от степени чистоты, технологии производства, размера зерна и наличия текстуры. Они изменяются в широких пределах <Тв = 280...700 МПа сто,2 = 230. .. 680 МПа ё = 2...40%. Так, литой бериллий со свойственным ему крупным зерном имеет (7в = 280 МПа 6 = 2...3%. Горячекатаный полуфабрикат, полученный из слитка, обладает также низкими свойствами. Его относительное удлинение вдоль прокатки такое же, как у литого материала, а в поперечном направлении — близко к нулю. Помимо размера зерна на пластичность бериллия влияют его структурные особенности. Гексагональная структура характеризуется отношением периодов решетки с/а < 1,63, при котором базисная плоскость не единственно возможная плоскость скольжения. Другими плоскостями скольжения в ГП решетке являются плоскости призмы и пирамидальные плоскости, что обеспечивает таким металлам, как титан и цирконий, хорошую пластичность. Однако критическое напряжение, необходимое для сдвига в плоскости призмы, у бериллия при 20 °С так велико (рис. 14.12), что скольжение при деформации идет только по плоскости базиса.  [c.427]


Бериллий применяют в реакторной технике в качестве замедлителя. В связи с возрастающим производством этого металла стало возможным его применение в самолетостроении, особенно в ракетостроении.  [c.390]

Развитие производства реактивной сверхзвуковой авиации, управляемых снарядов и ракет, космических кораблей потребовало применения в качестве конструкционных высокотемпературных материалов ряда тугоплавких металлов (вольфрам, молибден, хром, ниобий, тантал и др.), ранее не применявшихся из-за присутствия в них примесей, катастрофически снижающих способность этих металлов к пластической деформации. С повышением чистоты увеличивается пластичность этих металлов и улучшаются их физико-химические и технологические свойства. Отсюда следует, что проблема использования указанных тугоплавких металлов и многих редких (бериллий, цирконий и др.) в качестве конструкционных материалов заключается в получении этих металлов высокой чистоты. Из перечисленных металлов даже хром после освобождения его от примесей становится пластичным.  [c.175]

В Советском Союзе производство редких металлов стало быстро развиваться. Уже в 1927 г. было освоено производство вольфрама,. в 1928 г. — молибдена, в 1929 г. — твердых сплавов, в 1931 г. — ферросплавов вольфрама и молибдена, в 1932 г. — бериллия, в 1933 г. — тантала и лития, в 1932— 1935 г. — феррованадия.  [c.24]

Бериллий — дорогой и редкий металл, однако комплекс свойств этих бронз настолько высокий, что их производство экономически оправдано.  [c.363]

Производство цветных металлов и в особенности алюминия неуклонно возрастает. С каждым годом увеличивается количество металлов и сплавов, используемых в качестве конструкционных материалов. Наряду с конструкциями из алюминия, меди, никеля и титана в сварном исполнении в настоящее время изготовляют изделия из циркония, серебра, платины, бериллия и других металлов.  [c.492]

Производство цветных металлов, и особенно алюминия, возрастает и соответственно увеличивается объем сварных конструкций, изготовляемых из цветных металлов, причем не только сплавов алюминия, меди, никеля, титана, но и циркония, бериллия и их сплавов.  [c.315]

Поступление в окружающую среду металлов с золами в результате работы ТЭС превышает их мировое промышленное производство во много раз [32] мышьяк — в 6 раз, германий — в 2550 раз, висмут — в 3 раза, бериллий — в 80 раз, скандий — в 600 раз, кобальт — в 12 раз, галлий — в 5000 раз, уран — в 70 раз. Представляется особенно важным, что выбросы урана с золами от сжигания каменного и бурого углей в мире составляют около 200 тыс. т. в год. Поэтому среднее влияние на радиационный фон при работе ТЭС значительно превосходит вклад АЭС в безаварийном режиме (последний состоит в основном в выбросах инертных радиоактивных газов (ИРГ) и составляет около 20 Ки за сутки, или 1 % принятых норм ПДК).  [c.254]

Под измельчением понимают уменьшение начального размера частиц материала путем разрушения их под действием внешних усилий, преодолевающих внутренние силы сцепления. Измельчение дроблением, размолом или истиранием, являясь старейшим методом перевода твердых веществ в порошкообразное состояние, может быть или самостоятельным способом получения металлических порошков, или дополнительной операцией при других способах их изготовления. Наиболее целесообразно применять механическое измельчение при производстве порошков хрупких металлов и сплавов, таких как кремний, бериллий, сурьма, хром, марганец, ферросплавы, сплавы алюминия с магнием и др. Размол вязких пластичных металлов (цинк, медь, алюминий и т. п.) затруднен, так как они в большей степени расплющиваются, а не разрушаются. Наибольшая экономическая эффективность достигается при использовании в качестве сырья отходов, образующихся при обработке металлов.  [c.18]

Титан в настоящее время получается методами порошковой металлургии в небольших масштабах по сравнению с методами дугового плавления (см. стр. 576—577, табл. 3 и 4). Цирконий и его сплавы с оловом, полученные методами порошковой металлургии, содержат повышенное количество кислорода и азота и не обладают той высокой коррозионной стойкостью, какую имеют сплавы, полученные дуговым плавлением. Методы порошковой металлургии применяются наряду с другими методами для производства заготовок и изделий из тория, ванадия и бериллия. Более подробные сведения о редких и тугоплавких металлах см. в гл. VIII Редкие металлы и их сплавы и X Титан и его сплавы .  [c.598]


Однотипные плоские пружины изготовляют из качественных металлов — сплавов цветных металлов (фосфористая и берилли-евая бронза) и пружинных сталей [12]. При оптимизации плоских пружин принимают заданными затраты на трудоемкость изготовления при условии определенной прогрессивной технологии производства. Задача комплексной оптимизации сводится к выбору оптимального материала и оптимальных геометрических параметров поперечного сечения А и А по критерию наименьших материальных затрат С на изготовление плоской пружины.  [c.374]

Способы получения хлопьевидного (чешуйчатого) бериллия электролизом расплавленных смесей хлоридов бериллия и щелочных металлов, разработанные Купером [4], Сойером и Кьеллгрепом [2й1, а также Л орана [19], до сих пор не нашли промышленного применения. Однако фирма Пешинэ во Франции в течение ряда лет получала хлопьевидный бериллий электролизом хлоридов согласно сообш,ениям, объем этого производства невелик по сравнению с производством в США.  [c.56]

Коррозия бериллия в воде изучена мало, хотя она имеет отношение к процессу его производства. Химическое поведение бериллия, полученного методом пороп1ковой металлургии, более постоянно по сравнению с литым металлом, по-видимому, вследствие различия величины зерен. Присутствие в воде хлор- и сульфат-ионов, а также ионов меди и железа несколько увеличивает скорость точечной коррозии. Заготовки из горичепрессованиого в вакууме порошкового бериллия легко выдерживают испытания в воде в течение S6 час при 250°. Было найдено, что некоторые из таких бериллие-вых образцов даже более коррозионностойки в воде при 350 , чем цирконий, то1да как другие образцы в этих же условиях полностью разрушаются. Имеются данные, свидетельствующие о том, что коррозионная стойкость металлического бериллия в воде ири высоких температурах зависит от содержании примесей в нем, причем повышенное содержание железа оказывает благоприятное воздействие, тогда как содержание алюминия и кремния сверх допустимого количества является вредным.  [c.60]

Однако растворимые соединения бериллия могут вызывать дерматиты, а вдыхание туманов, пыли и дымов этих соединений или соединений, образующихся при плавке металла и его сплавов, приводит к острой пневмонии. Восприимчивость отдельиых людей весьма различна. Некоторые люди сверхчувствительны к воздействию бериллия и поэтому не могут работать в берил-лиевой промышленности. Особенно это относится к производству галоге-нидов бериллия, которые гораздо более токсичиы, чем, например, сульфат бериллия.  [c.61]

Способы производства бериллия отливкой в вакууме заготовок с последующей их горячей обработкой давлением в защитных стальных оболочках подробно рассмотрены в статьях, опубликованных Кауфманом, Гордоном и Лилли 111, 121. Слитки диаметром до 203 жл1 выплавлялись в индукционных печах в тиглях из окиси бериллия в вакууме 100—500 мк. Металл отливали через дониое отверстие в тигле, в процессе плавки закрытое стержнем из окиси бериллия. Отливку производили в графитовую изложницу с тепло-изолпроваиной верхней частью. Большое значение имеет скорость кристаллизации в изложнице, так как слишком быстрое охлал-депие приводит к растрескиванию отливки, а слишком медленное к получению крупнозернистой структуры и частичному взаимодействию бериллия с графитовой изложницей. Ковать, прокатывать и выдавливать литой бериллий можно в защитной оболочке, например из стали SAE 1020, в интервале температур 317 -Стержни, прутки, пластины и трубы могут быть изготовлены выдавливанием. Помещенную в оболочку заготовку выдавливают при 816 1093" через фильеру, имеющую коническую или колоколовидную форму канала. Головной конец выдавливаемой заготовки имеет форму усеченного конуса, на который надевают конический наконечник, из мягкой стали 112]. Из хлопьевидного и порошкового бериллия также могут быть изготовлены бруски, пластины, прутки и трубы для этого его прессуют в стальных пресс-формах и затем выдавливают так же, как и литой металл.  [c.68]

Наиболее огнеупорная, а также наименее химически активная окись — окись тория. Она пригодна для применения в тиглях, предназначенных для сплавов с очень высокой температурой плавления. Тигли, набитые окисью тория, могут быть применены до 2700°. Окись магния, окись бериллия и окись циркония тоже представляют собой материалы с высокими огнеупорными свойствами, но они более химически активны и поэтому менее пригодны, чем окись тория. Окись алюминия имеет максимальную температуру службы до 1900—1950°, что является пределом, до которого можно применять оптический пирометр с исчезающей нитью, смотровой трубой из корундиза и экраном как источником излучения абсолютно черного тела. Современное производство прямых непористых смотровых труб из окиси тория значительно расширяет область применения этого метода. При более высоких температурах возможно измерение лучеиспускания непосредственно поверхности металла только оптическим пирометром или фотоэлектрическим элементом. В этом случае поверхность металла не удовлетворяет условиям излучения абсолютно черного тела, и поэтому такой метод можно применять только в том случае, если известны данные об эмиссионной способности металла и если для градуировки имеются в распоряжении металшы с известной точкой плавления и эмиссионной способностью, близкой к исследуемому сплаву. Однако точность такого метода не очень высока. Подробности мы рассматриваем ниже при описании метода Мюллера. Вольфрам-ирридиевые, вольфрам-мо-либденовые и различные другие термопары могут быть применены для измерения высоких температур однако эти термопары нельзя считать удовлетворительными ввиду трудности получения повторимых результатов (см. ниже).  [c.179]

Для производства компактного бериллия в виде заготовок применяют методы порошковой метал-лургрш. В безокислительной среде бериллий измельчают в порошок и подвергают горячему прессованию в вакууме. Чем мельче зерна порошка, тем выше прочностные и пластические свойства металла. Бериллий и его соединения в виде порошков, пыли и паров остро токсичны, они вызывают расстройство дыхания и дерматиты, поэтому при работе с ними прибегают к специальным методам защиты. Вместе с тем обработанные детали из бериллия вполне безопасны.  [c.636]


Особенно быстро производство редких металлов развилось за последние 15 лет —в послевоенный период. Это было вызвано разнообразием требований к физико-химическим свойствам материалов, которые предъявляет в настоящее время промышленность, особенно новые отрасли техники скоростная и высотная авиация, электровакуумная техника и полупроводниковая электроника, производство атомной энергии. Так, например, потребность в жаропрочных и легких сплавах для авиации привела к освоению и организации в крупных масштабах производства титана — металла, который еще 15. чет назад был ррл> огтью паже в лабораториях. В связи с быстрым развитием полупроводниковой электроники было создано производство германия. Возникновение атомной техники потребовало организации производства урана и тория — основных видов атомного горючего, а также производства ряда других материалов для атомных реакторов, в частности циркония, бериллия н лития. Важнейшее значение имеют редкие металлы для дальнейшего увеличения выпуска специальных сталей, сверхтвердых, жаропрочных и коррозионноустойчивых материалов, производства электроосветительных ламп, радио-ламп, рентгеновской аппаратуры, радиолокаторов и фотоэлектронных приборов, а также различных деталей в автомобилестроении, тракторостроении, приборостоении.  [c.24]

В существующей в настоящее время технологии получения бериллия основная цель плавки — очистка магнийтермического металла от примесей, так как на современнохм уровне развития производства бериллия не удается получить из литого бериллия-изделий с удовлетворительными механическими свойствами.  [c.514]

Производство цветных металлов, и в особенности алюминия, неуклонно возрастает, опережйя рост выпуска стали. С каждым годом увеличивается число металлов и сплавов, используемых в качестве конструкционных материалов для производства сварных изделий. Наряду с конструкциями из алюминия, меди, никеля, титана в сварном исполнении в настоящее время изготовляют изделия из циркония, серебра, платины, бериллия и других металлов, числящихся в категории редких или драгоценных. Недалеко то время, когда практически все используемые в технике цветные металлы найдут применение в сварочном производстве.  [c.635]

На ВНИИХТ возлагалась задача создания технологии переработки радиоактивных и редкометаллических руд с получением исходных химических соединений для нужд оборонной промышленности ( фан, торий, литий, бериллий) и зарождающейся атомной энергетики, в том числе конструкционных материалов (цирконий, гафний, тантал, ниобий). В сферу деятельности ВНИИХТа вошли также такие ценные элементы, как молибден, вольфрам, скандий, ванадий, рений, селен, редкоземельные элементы, золото, серебро, металлы платиновой группы, многие из которых присутствуют в урановых рудах. Главными задачами являлись разработка технологий эффективного извлечения зфана и сопутствующих элементов, создание малоотходных экологически безопасных производств, экономное расходование реагентов, материалов и энергоресурсов.  [c.307]

Способы ЛВМ изготовляют отливки практически из всех литейных сплавов — черных (различных сталей и чугунов) и цветных [алюминиевых, магниевых, медных, жаропрочных на основе никеля и кобальта, титановых, берилл иевых, ниобиевых и др.] В ювелирном производстве и стоматологии способ ЛВМ широко используют при изготовлении отливок из сплавов благородных металлов (золота, серебра и платины). Однако основную номенклатуру (около 80% общего выпуска отливок по выплавляемым моделям) составляют мелкие стальные детали из конструкционных углеродистых и легированных сталей.  [c.239]


Смотреть страницы где упоминается термин Бериллий производство металла : [c.5]    [c.47]    [c.933]    [c.35]    [c.442]    [c.74]    [c.2]    [c.146]    [c.47]    [c.56]    [c.68]   
Конструкционные материалы Энциклопедия (1965) -- [ c.117 ]



ПОИСК



Берилл

Бериллий

Металлы производство

Производство бериллия



© 2025 Mash-xxl.info Реклама на сайте