Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линии уширенне доплеровское

Наибольшая мощность (45 и 37%) приходится соответственно на излучение длин волн 0,4880 (голубая линия) и 0,5017 мкм (зеленая линия). Суммарная мощность излучения на трубках длиной 50 см составляет несколько ватт. Ширина линий определяется доплеровским уширением, обусловленным высокой ионной температурой (обычно свыше 2000 К). Доплеровская ширина оказывается при этом порядка нескольких тысяч мегагерц, в то время как частотный интервал между модами резонатора равняется нескольким сотням мегагерц, поэтому генерация, как правило, происходит на многих модах.  [c.43]


МОЛЕКУЛЯРНЫЕ СПЕКТРЫ — спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетич, состояния в другое. М. с. определяются составом молекулы, её структурой, характером хим. связи и взаимодействием с внеш. полями (и, следовательно, с окружающими её атомами и молекулами). Наиб, характерными получаются М. с. разреженных молекулярных газов, когда отсутствует уширение спектральных линий давлением такой спектр состоит из узких линий с доплеровской шириной.  [c.201]

Эквивалентная ширина одиночной линии, уширенной за счет соударений, может быть определена из уравнения (2.706), если подставить в него значение Xv из (2.65) и затем проинтегрировать его. Аналогично Wi для линии с доплеровским уширением можно определить путем подстановки в уравнение (2.706) значения Xv из (2.69) и проведения интегрирования. Подробности этих вычислений и окончательные выражения для Wi можно найти в книге [49].  [c.109]

Доплеровское уширение обусловлено тем, что частота го движущегося осциллятора, составляющая скорости которого в направлении луча зрения равна и, в соответствии с принципом Доплера смещена на величину Av = vov . При максвелловском распределении молекул по скоростям контур линий, уширенный вследствие эффекта Доплера, имеет гауссов вид  [c.17]

Рис. 3.17. Гауссова форма линии при доплеровском уширении. Рис. 3.17. Гауссова форма линии при доплеровском уширении.
Под влиянием внеш. электрич. и магн. полей происходит расщепление спектр, линий (см. Зеемана эффект, Штарка эффект). Возмущающие факторы, существующие в излучающей среде, вызывают уширение и сдвиг спектр, линий (напр., доплеровское уширение линий в излучении плазмы, см. Ширина спектральных линий).  [c.42]

Остановимся теперь на неоднородном уширении, которое характеризуется тем, что можно указать, какая группа атомов (например, обладающих скоростью в пределах от и до и + Аи) ответственна за тот или иной участок уширения линии. Классическим примером неоднородного уширения является доплеровское, однозначно связанное с тепловым движением излучающих атомов. Более подробно эффект Доплера рассмотрен в гл. 7, посвященной релятивистским эффектам, а здесь мы ограничимся оцен-  [c.66]

Рассмотрим более подробно природу доплеровского уширения спектральной линии. Пусть имеется некоторый ансамбль излучающих атомов (ионов), участвующих в хаотическом тепловом движении. В этом случае скорости частиц распределены по закону Максвелла, т.е. относительное число частиц dn/n, проекции скорости которых лежат в интервале от до l x + определяется выражением  [c.391]

Какими параметрами определяется доплеровское уширение спектральной линии  [c.453]


Доплеровское уширение линий. Хаотическое движение излучающих частиц приводит к доплеровскому уширению спектральных линий. При максвелловском распределении частиц по скоростям выражение для формы спектральной линии имеет гауссовский вид  [c.262]

Доплеровское и естественное уширения — независимые явления, одновременно влияющие на контур линии. Поскольку каждый атом, движущийся по отношению к наблюдателю с заданной скоростью, излучает линию с естественным уширением, каждый бесконечно малый участок доплеровского контура расширен в соответствии с функцией (5.37). В этом случае линия представляет собой свертку гауссовской (5.39) и дисперсионной (5.37) функций. Вследствие разницы в форме этих функций (рис. 97) при одинаковом действии обоих факторов центр линии и его ширина в основном определяются гауссовской функцией, а крылья линии — дисперсионной функцией.  [c.263]

Рис. 4. Модовый состав резонатора при доплеровском уширении атомной линии Рис. 4. Модовый состав резонатора при доплеровском уширении атомной линии
В случаях большой интенсивности лазерного излучения, особенно при импульсном режиме работы лазера, имеют место явления двухфотонного поглощения, состоящие в том, что молекула одновременно поглощает два фотона и переходит в энергетическое состояние, энергия которого равна сумме энергий двух падающих фотонов. Исследование спектров флуоресценции и поглощения подобных систем открывает новые возможности, которые были исключены при использовании обычного источника света. Так, если систему атомов или молекул освещать двумя лазерами, обеспечивающими излучения на частотах Vj и Vg, направленные навстречу друг другу, а частицы при этом перемещаются со скоростью v вдоль линии распространения лучей, то будут наблюдаться новые волны, одна с частотой Va (1 — v ) и другая с частотой (1 + vie). При достаточно высоких интенсивностях лазерных лучей двухфотонное поглощение приведет систему в состояние с энергией /г (vj + Vg) -+ ft (vj — v ) vie. Видно, что доплеровское уширение имеет  [c.221]

M" J уширение, обусловленное линейным эффектом Штарка для атомов водорода и водородоподобных ионов, преобладает над доплеровским. Форма линий и их полуширина бЯш становятся мало чувствительными к значениям темп-ры Это позволяет применять такие линии для определения путём подбора такого значения п , при к-ром расчётный контур лучше всего согласуется с измеренным /д (X). Менее точен, но более удобен метод определения по измеренной полуширине т. к. расчётные графики зависимости бХш (Пе) для многих линии построены. По контурам линий других атомов значение мож-  [c.607]

ППЧ реализуется как при внеш. микроскопич. воздействии [вследствие описываемого величинами о и 2. в (12) взаимодействия с др. частицами, приводящего к сбою фазы атомного осциллятора — см. Уширение спектральных линий], так и в результате хаотизации параметров излучаемого фотона независимо от микроскопич. воздействия среды (при доплеровском уширении).  [c.568]

УСТОЙЧИВОСТЬ (движения — стабильность какой-либо характеристики движения во все время движения по отношению к малым возмущениям движения в его начале равновесия — малость отклонения механической системы от положения равновесия в моменты времени, последующие за малыми возмущениями равновесия системы системы—свойство системы возвращаться к состоянию равновесия после малых отклонений из этого состояния термодинамическая — устойчивость равновесия термодинамической системы относительно малых вариаций ее термодинамических параметров) УШИРЕНИЕ (доплеровское — увеличение ширины спектральных линий, вызванное движением источника света относительно его наблюдателя спектральных линий — увеличение ширины спектральных линий по отношению к естественной ширине ударное — уширение спектральньгх линий, вызванное взаимодействиями атомов и молекул с окружающими их частицами)  [c.291]

Для того чтобы, пользуясь таблицами, найти концентрацию электронов, необходимо построить эксперихментальный контур линии или определить ее полуширину. Штарковское уширение линий слабо зависит от температуры, но в более точных исследованиях температура должна быть известна, и ее определяют из других экспериментов. Одновременное действие двух причин уширения (доплеровского и штарковского эффектов) и форма контуров ряда линий водорода, в том числе и линии Ьа, рассматриваются в работе [77]. Штарковский эффект для линии Ьа в слабом электрическом поле рассмотрен в работе [78].  [c.364]

Для того, чтобы сравнить оценку Lkoi- по формуле (5. 54) с дан ными опыта, надо выбрать определенный источник света. Пуегь интерферометр освещается излучением газоразрядной плазмы низкого давления, когда столкновениями можно пренебречь, а основной причиной уширения спектральной линии служ1гг хаотическое тепловое движение излучающих атомов. Механизм этого доплеровского уширения рассмотрен в гл. 7, а сейчас мы ограничимся некоторыми простыми оценками.  [c.232]


Нетрудно показать, что контур линии при таком уширении будет гауссовским. Доплеровская ширина спектральной линии б д зависит от длины волны излучаемого света и пропорциональна V т/м, где Т — термодинамическая температура гаал, М — его молярная масса. Она в среднем более чем на два порядка превышает естественную ширину спектральной линии, обуслов ленную процессами излучения. В грубом приближении можно  [c.232]

Исрейдсм теперь к исследованию следствий хаотического движения излучающих свет атомов (ионов). В этом случае возникает уширение спектральной линии, которое часто маскирует те или иные физические эффекты (в том числе и доплеровское смещение частоты, возникающее при направленном движении излучающих частиц). Вследствие такого уширения спектральных линий иногда оказывается неэффективным увеличение разрешающей силы и дисперсии спектральных приборов.  [c.391]

Доплеровское уширение спектральных линий в значительной степени лимитирует возможности оптической спектроскопии высокого разрешения. Известно (см. 5.7), что, увеличивая коэффициент отражения зеркал интерферометра при высокой точности их изготовления, повышая расстояния между отражающими поверхностями и используя сложные интерфером.етры (мультиплексы), можно довести разрешающую силу интерферометра до значения порядка 10 и даже более. Однако при реализации столь большой разрешающей силы в оптических экспериментах часто возникают серьезные затруднения. Конечно, могут появиться задачи, при которых требуется с высокой точностью записать широкий контур, но если обратиться к возможности раздельного наблюдения двух близких по длине волны линий при учете неизбежных флуктуаций источника, то, даже используя прибор высокой разрешающей силы, нельзя их разрешить, если доплеровские контуры сильно перекрываются. Нетрудно оценить ту область, где возникают такие перекрытия пусть л = 5000А и 6Лдо = 0,005А тогда У./ЪУ. 10 , что и объясняет трудность реализации разрешающей силы, если она составляет несколько миллионов.  [c.393]

Таким образом в опыте Гольдхабера и др. осуществляется очень интересный случай резонансного рассеяния -квантов без использования эффекта Мессбауэра. Естественно, что наблюдение резонансного рассеяния такого характера возможно только при описанной выше кинематике процесса (т. е. когда нейтрино летит вверх, а ядро Sm, и у-квант вниз, причем у-квант вылетает из движущегося ядра) и при Тя=Тя. На самом деле энергия е-захвата ядра (0,900 Мэе) несколько отличается от энергии возбуждения ядра (0,961 Мэе). Поэтому Гя 2,88 эвФТ/=3,28 эв. Однако это различие компенсируется небольшим отклонением направления вылета -квантов от вертикали (см. рис. 152). Заметим, что для успеха опыта достаточно совпадения Гя и Тп с погрешностью до доплеровского уширения линии испускания, которое сравнительно велико  [c.251]

Эффект Доплера существенно сказывается на структуре спектральных линий источников света. Вообще следует отметить, что во. всех газоразрядных источниках света атомы и ионы газа летят с большими скоростями во всех направлениях. В зависимости от скорости они будут давать разное доплеровское смещение частоты юлучения, в результате чего спектральные линии оказываются расщиренными. Это явление называют доплеровским уширением спектральных линий.  [c.220]

Ширина спектральных линий в полом катоде обусловлена в основном доплеровским уширением. Для его уменьшения прибегают к охлаждению катода. Вследствие выделения тепла при разряде температура газа внутри полости катода может быть заметно выше температуры его стенок. Для линий водородоподобных атомов, сильно подверженных эффекту Штарка, может оказаться существенным их уширение заряженными частицами в плазме. Резонансные линии элементов нередко испытывают уширение вследствие самопоглощения. (Об уширенин спектральных линий см. задачу 17 I.)  [c.74]

Рис. 104. Теоретическая зависимость ширины АХ (в нм) линий Я р от Л (в см-- ) для Г =10 000К пунктир соответствует области, где следует учитывать доплеровское и аппаратное уширения линии Рис. 104. Теоретическая зависимость ширины АХ (в нм) линий Я р от Л (в см-- ) для Г =10 000К пунктир соответствует области, где следует учитывать доплеровское и аппаратное уширения линии
Гуд, равпойчастоте уширяющих столкновений. Неоднородность магн. поля приводит также к уширению линий ЦИ, к-рое, напр., в плазме токамака может превзойти доплеровское.  [c.108]

Исследование формы К. с. л. используется для определения физ. характеристик излучающих и поглощающих объектов. Форма К. с. л. оптически тонкого объекта определяется доплеровским уширением и взаимодействием излучающих атомов с окружающими частицами. В разрежеиных газах и плазме К. с. л. гауссов, при умеренных давлениях — лоренцевский (для нейтральных газов — вплоть до давлений н неск. дес. атмосфер, в плазме — для линий атомов и ионов низкой кратности, кроме водородоподобных, при плотности электронов —10 см ). При высокой плот-  [c.450]

Применение когерентных источников излучения позволяет наблюдать методами М. с. весьма узкие спектральные линии, т. е. достигать высокого спектрального разрешения. Типичные ширины линий, обусловленные столкновениями частиц в газе,— от 10 МГц до 1 МГц при давлениях от 1 до 10 Па. При разрежении газа ширины линий определяются Доплера эффектом при движении частиц и соударениями со стенками поглощающей ячейки, они составляют в микроволновом диапазоне от 1 МГц до 0,1 МГц. Для дальнейшего сужения линий применяют ряд способов устранения доплеровского уширения. Ширины линий в таких субдоплеровских спектрометрах определяются временем взаимодействия частиц с полем излучения (см. Неопределенностей соотношения). В молекулярных и атомных перпен-  [c.133]

ТО в спектральном контуре поглощения (усиления) этой волны образуется провал на частоте Длительность существования провала определяется временем жизни частиц на возбуждённом уровне. Перестройкой частоты пробного пучка удаётся измерить естеств. форму линий перехода, совпадающую с формой провала в насыщенном спектре поглощения (усиления) и обычно скрытую неоднородным (в газе — доплеровским) уширением. Этим методом можно также определить времена релаксации двухуровневой системы, Т. о., Н. с. позволяет измерять параметры одиночного оптич. резонанса, не поддающиеся измерению методами линейной спектроскопии. Циркулярно поляризованная волна накачки может индуцировать в среде гиротропию для пробной световой волны.  [c.306]

Оптические реперы. Используемые в СВЧ-диапазоне методы получения узких спектральных линий оказались не применимыми в оптич. области спектра (доплеровское уширение мало в СВЧ-диапазоне). Для О. с. ч. важны методы, н-рые позволяют получать резонансы в центре спектральной линии. Это даёт возможность непосредственно связать частоту излучения с частотой квантового перехода. Перспективны три метода метод насыщенного поглощения, двухфотонного резонанса и метод разнесённых оптич. полей. Осн. результаты по стабилизации частоты лазеров получены с помощью метода насыщенного поглощения, к-рый основан на нелинейном взаимодействии встречных световых волн с газом. Нелинейно поглощающая ячейка с газом низкого давления может находиться внутри резонатора лазера (активный репер) и вне его (пассивный репер). Из-за эффекта насыщения (выравнивание населённостей уровней частиц газа в сильном поле) в центре доплеровски-уширен-ной линии поглощения возникает провал с однородной шириной, к-рая может быть в 10 —10 раз меньше доплеровской ширины. В случае внутренней поглощающей ячейки уменьшение поглощения в центре линии приводит к появлению узкого пика на контуре зависимости мощности от частоты генерации. Ширина нелинейного резонанса в молекулярном газе низкого давления определяется прежде всего столкновениями и эффектами, обусловленными конечным временем пролёта части-  [c.451]


Так, уширение спектральной линии, наир, за счёт появления сторонней (доплеровской или столкнови-тельной) ширины Г линии поглощения, обычно значительно превосходящей естеств. ширину у, снижает в Г/у > 1 раз остроту резонанса в поглощении, приводя к замене величины Xg значением коэф. поглощения в центре со = Шд уширенной линии х(Ид) =  [c.636]

П, э. играет большую роль в квантовой электронике в нелинейной оптике ячейки с просветляющимся веществом используются для т, н. пассивной модуляции добротности и синхронизации мод лазеров, формирования коротких импульсов в лазерных усилителях и т. п. П, э. в газовых средах, помещённых в резонатор лазера а. обладающих доплеровски уширенной линией поглощения на частоте генерации, используется для стабилизации частоты и сужения линий генерации. В нели-нейной спектроскопии наблюдение П. а. в неоднородно уширенных линиях поглощения является ордт/i из методов регистрации спектров с высоким разрешением.  [c.151]

Ралеевская линия рассеянного в газе света уширена из-за связанного с движением частиц доплеровского эффекта. Ушнрение зависит от угла рассеяния 0 и, согласно (4), его величина порядка Део ш(и/с)зт6/2, где V — средняя тепловая скорость молекул. Следует отметить, что спектр рассеянного вперед света не уширен, а ширина спектра, рассеянного назад,— порядка доплеровской ширины атомной линии поглощения.  [c.281]

В разреженном газе контур линии Р. и. определяется доплеровским уширенцел спектральных линий и его ширина зависит от угла рассеяния. Если спектральная линия атома испытывает дополнит, уширение Г и сдвиг А за счёт соударений, а Р. и. возбуждается монохроматич. излучением, то спектр Р. и. состоит из излучения той же частоты (Oj и лоренцевского контура с максимумом на частоте ш А и с шириной Г уе- В том случае, когда столкновения приводят лишь к сдвигу фазы волновой ф-ции атомного состояния, отношение интенсивностей этих компонент Р. и. равно Уе/Г. При наличии неупругих столкновений отношение интенсивностей будет другим и в спектре Р. и, возможно появление дополнит, линий.  [c.313]

УШИРЁНИЕ СПЕКТРАЛЬНЫХ ЛИНИЙ—физ. процессы, приводящие к немонохроматичности спектральных линий и определяющие их контуры. Любое воздействие на излучающую или поглощающую квантовую систему (атом, молекулу) влияет на контур спектральной лилии (ширину и сдвиг). Радиац. затухание ответственно за естественную ширину спектральной линии. Тепловое движение в газе приводит к доплеровскому уширению. Взаимодействие атома или молекулы с окружающими частицами вызывает уширение, сдвиг и асимметрию контура спектральной линии, зависящие от сорта возмущающих частиц и характеристик их движения.  [c.262]


Смотреть страницы где упоминается термин Линии уширенне доплеровское : [c.394]    [c.450]    [c.262]    [c.109]    [c.114]    [c.392]    [c.393]    [c.607]    [c.16]    [c.299]    [c.307]    [c.365]    [c.606]    [c.263]    [c.685]   
Введение в нелинейную оптику Часть2 Квантофизическое рассмотрение (1979) -- [ c.274 , c.285 , c.312 ]



ПОИСК



Доплеровское уширение

Линии уширение

Линии уширенне доплеровское лазера минимальная достижима

Линии уширенне доплеровское механизмы

Линии уширенне доплеровское неоднородное, однородное

Линии уширенне доплеровское ударное

Линии уширенне доплеровское флуоресцентная

Линии уширенне доплеровское формула Шавлова и Таунса

Причины уширения. Однородное и неоднородное уширения. Естественная ширина линии излучения как однородное уширение. Ударное уширение. Доплеровское уширение. Форма составной линии излучения Модулированные волны

Уширение линии доплеровское

Уширение линии доплеровское

Уширение линии доплеровское за счет соударений



© 2025 Mash-xxl.info Реклама на сайте