Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача краевая неоднородная — Постановка 148 — Решение

Задача краевая неоднородная — Постановка 148 — Решение 148—152  [c.511]

Это условие совпадает с ранее установленным условием разрешимости самой краевой задачи Неймана N (7.3) и, естественно, должно автоматически выполняться по постановке задачи. Решение же интегрального уравнения включает частное решение неоднородного уравнения и собственную функцию, определение которой не представляет особого интереса при решении краевых задач, поскольку наличие ее в выражении для потенциала сводится к появлению лишь аддитивной постоянной, присутствующей в решении по постановке задачи.  [c.101]


Настоящая книга посвящена построению теории ползучести неоднородно-стареющих тел. Она состоит из шести глав. В гл. 1 приводится интегральная форма основных определяющих соотношений между напряжениями и деформациями, т. е. уравнений состояния дается постановка и формулируются условия, которые определяют решения краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, которые отражают наиболее характерные особенности деформирования стареющих материалов во времени. Доказывается ограниченность и асимптотическая устойчивость решения краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями.  [c.9]

Настоящая глава посвящена построению теории ползучести неоднородно-стареющих тел. Приводится интегральная форма линейных и нелинейных уравнений состояния, определяющих связь между напряжениями и деформациями. Дается постановка основных краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, отражающих наиболее характерные особенности деформирования стареющих материалов во времени. Устанавливаются достаточные условия ограниченности и асимптотической устойчивости решений краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями как внутри, так и на границе этих тел.  [c.12]

Одним из эффективных методов составления исходных дифференциальных уравнений и решения соответствующих краевых задач теплопроводности и термоупругости для кусочно-однородных тел (многослойных, армированных, со сквозными и с несквозными включениями) в случае выполнения на поверхностях сопряжения их однородных элементов условий идеального термомеханического контакта, для многоступенчатых тонкостенных элементов, локально нагреваемых путем конвективного теплообмена тел, тел е зависящими от температуры свойствами, с непрерывной неоднородностью является метод [52], основанный на применении обобщенных функций [7, 18,22, 50,87] и позволяющий получать единые решения для всей области их определения. В этих случаях физико-механические характеристики и их комбинации кусочно-однородных тел, толщина (диаметр) многоступенчатых оболочек, пластин, стержней, коэффициент теплоотдачи с поверхности тела могут быть описаны для всего тела (поверхности) как единого целого с помощью единичных, характеристических функций, а физико-механические характеристики тел с непрерывной неоднородностью с зависящими от температуры физико-механическими характеристиками могут быть аппроксимированы с помощью единичных функций. В результате подстановки представленных таким образом характеристик в дифференциальные уравнения второго порядка теплопроводности и термоупругости неоднородных тел, дифференциальные уравнения оболочек, пластин, стержней переменной толщины (диаметра), дифференциальные уравнения теплопроводности или условие теплообмена третьего рода с переменными коэффициентами теплоотдачи приходим к дифференциальным уравнениям или граничным условиям, содержащим коэффициентами ступенчатые функции, дельта-функцию Дирака и ее производную [52]. При получении дифференциальных ура,внений термоупругости для тел одномерной кусочно-однородной структуры наряду с вышеописанным методом эффективным является метод [67, 128], основанный на постановке обобщенной задачи сопряжения для соответствующих дифференциальных уравнений с постоянными коэффициентами. Здесь за исход-  [c.7]


Краевая задача для уравнения (5.5.1) с условиями (5.5.2) и (5.5.3) разрешима и имеет только одно решение. Постановка задачи является типичной для волноводов с неоднородным заполнением.  [c.224]

Этот раздел обобщает предыдущий в трех направлениях здесь вводятся неоднородные краевые условия, рассматриваются квадратичные и даже кубические элементы, а не линейные, и решаются дифференциальные уравнения четвертого порядка, а не только второго. Оценки ошибок для различных конечных элементов часто приводятся без доказательств, так как они вытекают из теории, которая будет развита далее в этой книге. Этап г метода конечных элементов те же, что и прежде вариационная постановка задачи, выделение кусочно полиномиальных подпространств в некотором допустимом пространстве, построение и решение линейных уравнений KQ Р. Эта схема в одномерном случае более или менее закончена.  [c.67]

Научной базой для расчета композитных пьезоэлементов является теория электромагнитоупругости структурно неоднородных сред, одна из центральных задач которой — построение адекватных математических моделей и разработка методов решения связанных краевых задач электро-и магнитоупругости композитов с учетом связности электрических, магнитных и деформационных полей, неоднородности этих полей, анизотропии и особенностей взаимодействия элементов структуры. Нерегулярный характер реальных структур пьезокомпозитов приводит к необходимости решения этой задачи в вероятностной постановке. Сложность решения краевых задач для микронеоднородных областей со случайными структу-  [c.4]

Основные работы, посвященные решению задач о наращивании методами теории упругости, приведены в [5241. На основе теории упругоползучего тела в работе [494] исследовано напряженно-деформированное состояние в однородных телах при их наращивании. В более общей постановке эта задача рассматривалась в [171]. Установлению определяющих соотношений и исследованию краевых задач вязкопластических течений "твердых тел посвящены работы [208, 209]. Уравнениям деформирования не вполне упругих и вязкопластических тел посвящены работы [217—220]. Задача термоползучести для неоднородно-стареющего тела исследована в [94, 95]. Плоская задача вязкоупругости для неоднородной среды, а также влияние старения материала на напряженно-деформированное состояние около отверстий исследовались в [429, 430, 474].  [c.27]

Материалы, составленные из чередующихся плоских слоев, обладают неоднородностью лишь в направлении, перпендикулярном слоям. Поэтому вычисление эффективных упругих констант сводится к одномерной задаче, которую удается решить точно как для периодических композитов [69], так и для композиционных материалов со случайным расположением слоев [296]. С целью прогнозирования эффективных неупругих свойств в настоящей главе дается постановка и строится решение стохастической краевой задачи упругопластического деформирования (нагружения) слоистого композита случайной структуры в произвольном макроскопически однородном иапряженно-деформиро-ванном состоянии.  [c.157]

В первой главе обоснована необходимость вероятностного описания реальных структур композитов, приведены определяющие соотношения для пьезоэлектрических и пьезомагнитных материалов. В рамках структурнофеноменологического подхода композит рассматривается как система взаимодействующих друг с другом элементов структуры однородные физико-механические свойства элементов структуры задаются с помощью общепринятых в механике феноменологических уравнений и критериев, а эффективные свойства композита вычисляются из решений краевых задач для уравнений механики с кусочно-постоянными быстро осциллирующими коэффициентами. Представлена постановка краевой задачи пьезомеханики для структурно неоднородного тела с пьезоактивными элементами структуры и определены этапы ее решения на основе двухуровневой иерархической модели.  [c.5]

Для получения приближенных решений внешних задач дифракции в локально-неоднородных средах в области длин волн, соизмеримых с характерными размерами препятствий, наиболее эффективными являются прямые проекционные методы, являющиеся модификациями метода Галёркина [7—9]. Они позволяют свести ис-, ходную внешнюю краевую задачу дифракции к внутренней, а затем к краевой задаче для системы обыкновенных дифференциальных уравнений. Достигается это постановкой условий на бесконечности в форме парциальных условий излучения, которые формулируются в виде точных интегральных соотношений на определенной  [c.206]



Смотреть страницы где упоминается термин Задача краевая неоднородная — Постановка 148 — Решение : [c.162]    [c.208]    [c.126]   
Расчет машиностроительных конструкций методом конечных элементов (1989) -- [ c.148 , c.152 ]



ПОИСК



656 —• Постановка задачи

I краевые

Задача краевая

Задачи краевые - Решении

К постановке зг ачи

Краевой задачи постановка

Краевой решение

Неоднородность

Неоднородные решения

Постановка и решение краевой задачи



© 2025 Mash-xxl.info Реклама на сайте