Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Навье — Стокса динамики вязкого газа

Параболическое уравнение (6.9) можно рассматривать как модель уравнений Навье — Стокса, описывающих течение вязкого сжимаемого газа. Предельный переход ео->0 моделирует переход к уравнениям динамики невязкого газа.  [c.154]

Для решения основного уравнения динамики вязкого газа (уравнение Навье — Стокса) в проекциях на оси координат необходимо совместить направление движения ленты между двумя роликами с положительным направлением оси X. Ось У направить перпендикулярно к абразивной поверхности ленты, ось 2 — поперек, затем принять граничные условия  [c.193]


Настоящая глава посвящена применению компактных аппроксимаций при численном решении задач динамики вязкого газа. Используя дискретизацию пространственных производных при помощи операторов компактного численного дифференцирования, можно строить различные разностные схемы для уравнений Навье-Стокса или Рейнольдса, вводя в последнем случае уравнения полуэмпирических моделей турбулентности или простейшие концепции турбулентной вязкости. Первое применение компактных аппроксимаций третьего порядка бьшо связано с построением итерационно-маршевых алгоритмов, не требующих покоординатного расщепления и реализующихся при помощи трехточечных скалярных прогонок [5, 6]. Неэффективные для расчета сложных течений в зонах возвратных течений они тем не менее оказались вполне применимыми при решении задач, в которых можно выделить некоторое преимущественное направление. Кроме того, вследствие своей простоты они позволили легко осуществить исследования, связанные с применением адаптирующихся к решению сеток.  [c.125]

При теоретическом подходе к изучению разрывов вводят в рассмотрение более сложные детализированные модели среды, учитывающие физические механизмы, обеспечивающие непрерывность изменения величин. Для газа, например, такими усложненными по сравнению с уравнениями газовой динамики моделями могут служить уравнения теплопроводного вязкого газа Навье-Стокса или уравнения Больцмана. Гиперболические уравнения возникают как предельный случай, когда внешний масштаб задачи L становится много больше внутреннего масштаба, определяющего ширину областей с быстрым изменением решения. При этом в уравнениях можно проводить упрощения, связанные с отбрасыванием малых членов. В частности, в областях, где функции меняются на расстояниях порядка L, при достаточно больших L можно пренебрегать высшими производными по сравнению с низшими, поскольку каждое дифференцирование добавляет к порядку величины множитель 1/L. Члены с высшими производными остаются существенными в узких зонах с  [c.78]

Для достаточно широкого круга задач такие результаты были действительно иолу чены. Однако практика расчетов показала, что при решении сколько-нибудь сложных задач в случае каких-либо особенностей, например, зон пограничных слоев с большими градиентами параметров потока в задачах динамики вязкой среды, зон концентрации напряжений в прочностных задачах, зон кумуляции энергии в ряде задач физики взрьь ва, сложных локальных особенностей границ областей, лобовой способ решения дает малонадежные численные результаты, теряется точность вычислений. Кроме того, трехмерные расчеты, особенно в механике жидкости и газа при учете реальной геомет- зии аппаратов, с большим трудом осуществляются на современных ЭВМ, даже если в течениях не возникает каких-либо особенностей. Если же соответствующие потоки газа или жидкости турбулируются, то даже в рамках имеющихся математических моделей, в частности уравнений Навье-Стокса со специальной вязкостью, описывающих движения такого типа, расчет, например, трехмерного обтекания самолета турбулентным потоком газа с помощью имеющихся разностных методов, по оценкам известного аме-  [c.14]


В предельном случае малых длин пробега мы приходим к задачам, которые могут быть решены в рамках теории сплошной среды или, точнее, с применением уравнений Навье — Стокса. По существу, это задачи обычной газовой динамики. Однако по установившейся традиции некоторые из них изучаются динамикой разреженных газов. В число таких задач входят, например, некоторые задачи о вязких течениях при малых числах Рейнольдса, о течениях с взаимодействием пограничного слоя с невязким потоком, о близких к равновесным течениях с релаксацией возбуждения внутренних степеней свободы, о течениях со скольжением и температурным скачком на стенке и т. д. К решению этих задач могут быть привлечены методы газовой динамики. В то же время эти задачи, решаемые в рамках теории сплошной среды, тесно связаны с кинетической теорией, так как только с помощью кинетической теории, из анализа уравнения Больцмана, можно обоснованно вывести уравнения Эйлера и Навье—Стокса и их аг алоги для рела-ксирующих сред, установить область их применимости и снабдить их правильными начальными и граничными условиями и коэффициентами переноса.  [c.5]

Основным предположением классической теории пограничного слоя Прандтля [Prandtl L., 1904] является малость продольных градиентов функций течения в пограничном слое (скорости, температуры) по сравнению с поперечными. Однако существует много задач динамики вязких течений газов при больших числах Рейнольдса, для которых это допущение не выполняется. К ним относятся, в частности, задачи с различного рода локальными особенностями течения в окрестности угловых точек контура тела, мест присоединения зон отрыва и др. В настоящей главе исследуются течения, в которых на коротких расстояниях (например, порядка толщи ны пограничного слоя) давление в сверхзвуковом потоке вблизи поверхности тела изменяется на свой основной порядок. Для этого проводится исследование асимптотического поведения решений уравнений Навье-Стокса в возникающих характерных областях течения и используется известный принцип сращивания асимптотических разложений, представляющих решение в различных областях.  [c.71]


Смотреть страницы где упоминается термин Уравнение Навье — Стокса динамики вязкого газа : [c.192]    [c.101]   
Механика жидкости и газа (1978) -- [ c.636 ]



ПОИСК



70 - Уравнение динамики

Динамика вязкого газа

Динамика газов

Навой 97, XIV

Навье

Навье уравнение

Навье—Стокса

Стокс

Стокса Навье — Стокса

Стокса уравнение

Уравнение Навье—Стокса

Уравнение в вязком газе

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте