Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Осаждение из газовой фазы

Регулируемый состав покрытия позволяет получать способ осаждения из газовой фазы, причем осаждаемые соединения отличаются высокой, чистотой. Исследованию закономерностей процессов, происходящих при осаждении из газовой фазы, аппаратурному оформлению различных технологических вариантов, изучению свойств покрытий посвящены многочисленные работы, обобщенные и проанализированные в монографии (73]. Мы рассмотрим этот метод в аспекте нанесения покрытий из тугоплавких неметаллических соединений.  [c.108]


А— йодный транспорт, л-тип — осаждение из газовой фазы, л-тип Д, О — осаждение из газовой фазы, р-тип [272, 273]  [c.512]

Предотвращение обрастания микроорганизмами и биокоррозии в водных и органических растворах достигается обработкой поверхности изделий радиоактивным технецием Тс или его соединениями. Толщина покрытий от моноатомного до 0,127 мм. Способ нанесения электрохимический, катодный, распылением, осаждением из газовой фазы, металлизацией, осаждением в вакууме [Пат. 608249 (Швейцария)].  [c.90]

Волокна бора и карбида кремния получают осаждением из газовой фазы на нагретую (до 1100—1200° С) поверхность вольфрамовой нити диаметром 12,5 мкм. Диаметр выпускаемых волокон 100—150 мкм. [14, 34, 120].  [c.35]

Металлические волокна (проволока). Волокна из металлов и их сплавов — бериллия, вольфрама, молибдена, стали, титана и др. получают различными методами. Наиболее распространенным из них является волочение, т. е. деформирование металла протягиванием катаных или прессованных заготовок через фильеру меньшего сечения. Известны и другие способы получения проволоки — гидроэкструзией, электрохимическим методом, вытягиванием из расплава, осаждением из газовой фазы, описанные в специальной литературе [27].  [c.42]

Исходные материалы. Матрицу в исходном состоянии чаще всего применяют в виде фольги металлов или силавов. Иногда матрица может быть применена в виде слоев, нанесенных на упрочнитель тем или иным методом. В качестве упрочнителей применяют нитевидные кристаллы, волокна и проволоки из раз-личных металлов или сплавов. Нитевидные кристаллы, волокна и проволоки могут быть применены как в виде отдельных кристаллов, моноволокон и проволок, так и в виде различного вида полуфабрикатов матов, жгутов, тканей, сеток и др. Кроме того, упрочнители часто применяют в виде своеобразного предварительного композиционного материала, представляющего собой отдельные кристаллы, волокна или проволоки, заключенные в матрицу. При этом материал матрицы может наноситься на упрочнитель методами плазменного напыления, химического и электрохимического осаждения, осаждения из газовой фазы, протяжки волокна через расплав матрицы и др. Более подробно технология изготовления таких предварительных композиционных материалов описана в соответствующих разделах по технологии изготовления композиционных материалов.  [c.120]

Волокна, проволоки и нитевидные кристаллы, применяемые в качестве упрочнителей, перед процессом диффузионной сварки чаще всего подвергают поверхностной очистке химическими методами. Это связано с наличием на поверхности упрочнителей различного вида замасливателей, смазок, применяемых в процессе изготовления волокон и проволок, тонких слоев окислов и др. Такая очистка осуществляется в щелочных или кислотных травителях. С целью повышения прочности связи на границе раздела упрочнителя с матрицей на поверхность волокон и нитевидных кристаллов в некоторых случаях наносят покрытие из металла или соединений методами химического, электрохимического осаждения, осаждения из газовой фазы и др.  [c.120]


Детали приборов, элементы сопротивления. Осаждением из газовой фазы получают массивные изделия. В вакууме или инертной атмосфере до 2500° С Хорошо штампуется в горячем и холодном состоянии, легко обрабатывается резанием, сваривается всеми видами сварки.  [c.13]

Осаждение из газовой фазы при 1800 и 2100° С  [c.36]

Термическое осаждение из газовой фазы позволяет получать изоляционные, проводниковые и полупроводниковые слои. Перенос вещества осуществляется газом-носителем. Наиболее часто термическое осаждение из газовой фазы используется для нанесения пленок окиси кремния и полупроводниковых пленок на поверхности кремния или сапфира. Можно получать этим методом и различные металлические пленки.  [c.432]

ЗЮа Осаждение из газовой фазы 0,5 —0,8 0.1 —1,0 5 1—5 3—4  [c.455]

Реактивное распыление, реактивная ионная имплантация, осаждение из газовой фазы 0,5—2.0 3—6 2—16 25—35 6—11.5  [c.456]

МЕТОДЫ ХИМИЧЕСКОГО ОСАЖДЕНИЯ ИЗ ГАЗОВОЙ ФАЗЫ  [c.107]

Характерным представителем кристаллических неметаллических термоизоляторов является пиролитический графит (пирографит). Его получают осаждением из газовой фазы на поверхность подложки при температурах 1500-2500 С [1], причем с ростом температуры подложки плотность пирографита приближается к теоретической плотности графита. Пирографит обладает ярко выраженной анизотропией свойства теплопроводности его теплопроводность в направлении нормали к поверхности осаждения примерно на два порядка ниже, чем в тангенциальных направлениях. Дело в том, что при осаждении пирографита образуются гексагональные плотноупакованные кристаллы в виде шестигранных призм, основания которых параллельны (или почти параллельны) поверхности осаждения, что приводит к образованию упорядоченной кристаллической структуры, вызывающей указанную анизотропию свойства теплопроводности.  [c.7]

Известно, что алмаз — это полупроводник с шириной запрещенной зоны 5,5 эВ, поэтому получить автоэмиссионный ток с чистого алмаза практически невозможно. Автоэмиссионные свойства наблюдаются из углеродных алмазоподобных поликристаллических пленок, полученных, например, методом химического осаждения из газовой фазы.  [c.197]

Изготовление я применение световодов. Волоконные С. на основе кварцевого стекла с низкими оптич. потерями изготовляют методом хим. осаждения из газовой фазы. В качестве исходных соединений используются кислород и хлориды кремния, германия, фосфора и др. Получаемая этим методом заготовка диам. 20—30 ми и длиной <400—1000 мм перетягивается в волоконный С. диам. 100 мкм с одновременным нанесением на него защитно-упрочняющей оболочки.  [c.462]

Традиционными методами нанесения пленок являются химическое и физическое осаждение из газовой фазы ( VD и PVD). Эти методы давно используются для получения пленок и покрытий различного назначения. Обычно кристаллиты в таких пленках имеют достаточно большие размеры, но в многослойных или многофазных VD-пленках удается получить и наноструктуры [14, 150]. Осаждение из газовой фазы обычно связано с высокотемпературными газовыми реакциями хлоридов металлов в атмосфере водорода и азота или водорода и углеводородов. Температурный интервал осаждения VD-пленок составляет 1200— 1400 К, скорость осаждения 0,03—0,2 мкм/мин. Использование лазерного излучения позволяет снизить до 600—900 К температуру, развивающуюся при осаждении из газовой фазы, что способствует образованию нанокристаллических пленок.  [c.53]

Использование рассматриваемого метода для получения покрьь тий с целью увеличения излучательной способности металлической поверхности имеет пока своп ограничения, но тем не менее способ осаждения из газовой фазы является весьма перспективным, так как позволяет получать в осадке практически любые материалы, нанесение которых в качестве покрытия другими способами не представляется возможным.  [c.110]

Известно, что на границе жидкого и твердого металлов существует контактное электрическое сопротивление Оно зависит от электрического сопротивления собственно контакта определяющегося степенью смачиваемости твердой поверхности жидкостью и дополнительных сопротивлений, вносимых промежуточными слоями (твердыми — окисленными, осажденными из газовой фазы, выпавшими из расплава газообразными - адсорбированными из расплава). Экспериментально установлено, что при полной смачиваемости стенки = 0. О порядке значений дополнительных сопротивлений можно судить по экспериментальным данным, приведенным в ряде работ при примерно однородной температуре контактной зоны [19]. Властности, для контакта электрода из нержавеющей стали с различными легкоплавкими расплавами в [16] получено сопротивление естественных оксидных пленок приблизительно 10 Ом-м и искусственно созданных толстых оксидных пленок 10 -10 Ом-м . Сопротивление, обусловленное наличием пленок физической адсорбции, составляет при комнатной температуре 10 —10 Ом-м [16]. По имеющимся в литературе данным различных авторов, полученным экспериментально при комнатной температуре, суммарное сопротивление контакта электрода из меди с легкоплавкими расплавами имеет порядок 10 — 10 Ом-м , что близко к даштым [16]. Известно также, что сопротивление, вносимое рыхлыми осажденными слоями, а также возникающее в случае химического взаимодействия контактирующих сред, может принимать любые, неограниченно большие значения [19]. Прямые данные по контакту твердых металлов с высокотемпературными расплавами в литературе отсутствуют.  [c.19]


Для нанесения тонких карбидных, нитридных и боридных покрытий обычно используется осаждение из газовой фазы. Для нанесения металлических покрытий чаще применяют электролитиче-.ский и химический методы осаждения, особенно при использовании волокон, имеющих определенную химическую активность при по-ьышенных температурах.  [c.147]

Основным методом получения нитевидных кристаллов карбида и нитрида кремния, окиси и нитрида алюминия и других тугоплавких соединений является осаждение из газовой фазы с использованием химических транспортных реакций, реакций пиролиза, восстановления летучих соединений и др. Промышленное производство нитевидных кристаллов указанным методом стало возможным после детального исследования Вагнером, Элиссом и др. механизма их роста, получившего название пар—жидкость—твердая фаза (ПЖТ). При получении методом ПЖТ нитевидных кристаллов тугоплавких соединений (40 ] в реакционную зону, в которой ведется осаждение соединения, специально вводят примеси некоторых элементов, образующих капельки жидких растворов с элементами соединения, например углерод, железо, кремний, алюминий и др. При получении нитевидных кристаллов карбида кремния используют жидкие тройные растворы железо кремний—углерод. Поверхность жидкой фазы является сильным катализатором участвующих в осаждении химических реакций, поэтому выделение вещества из газовой фазы происходит преимущественно на поверхности присутствующих в ростовой зоне жидких капелек. Далее происходит его растворение в капельке, диффузионный перенос через объем капли к границе раздела с подложкой и кристаллизация под каплей. В результате на подложке образуются вытянутые столбики конденсата, являющиеся нитевидными кристаллами. Ввиду малой скорости осаждения непосредственно на твердой поверхности кристаллы почти не растут в толщину, и отношение длины к диаметру у них достигает 1000 и более. В зависимости от условий получения они имеют диаметр от долей микрона до нескольких десятков микрон и длину до 60—80 мм.  [c.40]

Полуфабрикаты материалов ГМЗ, ГМЗ-И, ЕР нагревали в лабораторной печи в атмосфере аргона при температуре 1300— 3000° С. Осажденный из газовой фазы при 1800—2000° С пиролитический графит также подвергали высокотемпературной (до 3000° С) обработке. Кроме того, использовали термоме-  [c.35]

БЮг 1730 1250 Та, Мо, W А1 2 - 3 При нагреве электронной пушкой разложения не происходит. Та, Мо, W взаимодействуют с 510з с образованием летучих окислов. В полупроводниковой технике используется термическое осаждение из газовой фазы  [c.431]

Т10г 1840 Раз- лага ется на низкие окислы при нагреве до 2000°С Реактивное распыление, термическое осаждение из газовой фазы (ОС4Н9)4Т1  [c.432]

Известно, что механические свойства волокон с никелевым покрытием ухудшаются после термической обработки [147]., В связи с этим возникла необходимость нанесения на волокно адщитного покрытия, служащего диффузионным барьером и по-шшающего. прочность композиции. В качестве такого покрытия могут быть использованы карбиды (например, карбид кремния), которые почти не взаимодействуют с никелем, хромом, алюминием, медью и др. Покрытие из карбида кремния получили осаждением из газовой фазы при температуре 1200—1600° С и пониженном давлении по следующей схеме  [c.210]

Для ВОЛОКОН, С покрытием из карбида кремния характерно довольно резкое колебание прочности в узком интервале толщин покрытия (табл. 62). Это связано, по-видимому, с тем, что карбидной покрытие образуется в результате взаимод ствня углерода основы (волокна) с кремнием, осажденным из газовой фазы, что приводит к появлению дефектов в волокне и при незначительном увеличении толщины покрытия к резкому падению прочности.  [c.211]

Методика получения пленок ТЮ2 осаждением из газовой фазы состоит в следующем. На подогретую до определенной температуры подложку поступают пары четыреххлористого титана и пары воды. На поверхности подложки проходит реакция, которая соответствует уравнению Т1С14 -Н 2Н2О -> ТЮ2 -Ь 4НС1. От природы материала подложки зависит предельная толщина пленки.  [c.297]

Пластическая обработка. Монокристаллы молибдена ориентации 110 <110> промышленной чистоты, деформированные в кристаллографической плоскости 110 в кристаллографическом направлении <110>, легко разрушаются при прокатке [135, 136J. Ни один из монокристаллов не удалось прокатать с обжатием больше 20%. При такой деформации уширение образцов составляло около 10%. По данным других исследователей [39, 121, 126, 209], монокристаллы молибдена 110 <110> прокатывали без разрушения до большей степени деформации. Монокристаллы молибдена ориентации 110 <110>, полученные осаждением из газовой фазы [126], выдерживали большую степень деформации, однако по краям деформированного образца наблюдали глубокие трещины. На кривых деформационного упрочнения видно непрерывное возрастание упрочнения при прокатке, причем более значительное по сравнению с деформированными кристаллами других ориентаций 001 <110>, 001 <100> и 110 <100> (рис. 4.8) [121, 126,135,136,209].  [c.93]

В последние годы методы осаждения из газовой фазы применяются для получения чистых тугоплавких металлов, преци-  [c.107]

Существует огромное многообразие способов получения алмазоподобных пленок, это может быть и один из методов, рассмотренных в разделе 1.4.1. Наиболее распространенным методом получения алмазоподобных пленок является химическое осаждение из газовой фазы ( VD) [74]. При использовании метода VD в получаемой пленке наблюдается наиболее низкое содержание графитовой фазы. Углеродная пленка на поверхности подложки образуется при падении ионов углерода из газообразного углеводорода (обычно метана). При достаточно высокой температуре подложки ( > 1000 °С) возможен эпитаксиальный рост пленки. В случае высокой концентрации атомов углерода наблюдается предпочтительный рост аморфной углеродной пленки. Чтобы этого не произошло, в процессе роста пленок применяется стравливание неалмазных фаз углерода атомарным водородом. Для этих целей в рабочий газ добавляется до 99 % водорода. При этом считается, что химически чистый атомарный водород, присутствующий в плазме, вытравливает и переводит в газовую фазу неалмазные структуры в растущей пленке [74].  [c.45]


Заготовка волоконных световодов с низкими оптич. потерями изготовляется из особо чистых материалов r. i. обр. методом хим. осаждения из газовой фазы (см. Спетоеод). Затем из неё вытягивается ВС. Предложены новые методы изготовления кристаллич. ВС — вытягивание из расплава нитевидных монокристаллов или экструзия (выталкивание) пи -щнристаллич. волоконных световодов.  [c.335]

Молибденовый лист и простые профили могут быть покрыты путем совместной прокатки с материалом, стойким к окислению, наирнмер с инко-нелем, а молибденовые трубы покрывают нержавеющей сталью. Как на простые, так и на более сложные профили покрытия можно наносить различными методами, включая электролитическое осаждение, цементацию, осаждение из газовой фазы, осаждение в ванне расплавленного металла пли распыление факелом. Р.сли необходимо сохранить возможно большую прочность, в процессе нанесения покрытий не должно происходить рекристаллизации молибдена или сплава на основе молибдена.  [c.419]


Смотреть страницы где упоминается термин Осаждение из газовой фазы : [c.293]    [c.202]    [c.197]    [c.152]    [c.6]    [c.52]    [c.40]    [c.137]    [c.66]    [c.107]    [c.153]    [c.164]    [c.14]    [c.450]    [c.620]    [c.53]    [c.451]    [c.150]   
Смотреть главы в:

Тонкослойные стеклоэмалевые и стеклокерамические покрытия  -> Осаждение из газовой фазы


Композиционные материалы с металлической матрицей Т4 (1978) -- [ c.342 , c.343 ]



ПОИСК



Газовая фаза

Осаждение

П фазы

Фазы осаждения



© 2025 Mash-xxl.info Реклама на сайте