Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Остроградского — Карно

ТЕОРЕМА ОСТРОГРАДСКОГО - КАРНО  [c.469]

ТбО Теорема Остроградского — Карно об изменении кинетической энергии при ударе  [c.469]

ТЕОРЕМА ОСТРОГРАДСКОГО - КАРНО 471  [c.471]

Всякий удар согласно М. В. Остроградскому можно рассматривать как результат наложения новой связи. Следовательно, теорема Остроградского — Карно распространяется на разнообразные явления удара, в частности, ею можно пользоваться при рассмотрении соударения твердых тел. Теорема Остроградского—Карно применяется при различных технических расчетах. Как пример можно привести вычисление коэффициента полезного действия парового или гидравлического молота. Молот должен быть сконструирован так, чтобы величина кинетической энергии, затрачиваемой при соударении, была, по возможности, наибольшей, так как именно потерянная кинетическая энергия вызывает пластические деформации в металле, обрабатываемом молотом. Остальная кинетическая энергия расходуется на вибрации фундамента, кувалды п других частей сооружения.  [c.472]


Теорема о потере кинетической энергии (теорема Карно — Остроградского). При мгновенном наложении связей потерянная кинетическая энергия системы  [c.412]

Карно — Остроградского теорема 412 Касательные 259 — Длина 260 — Коэффициент угловой 260  [c.573]

Карно — Остроградского теорема 403 Касательные 259 —Длина ЙО — коэффициент угловой 260  [c.551]

Капиллярность 2 — 453 Карандаши алмазно-металлические — Характеристика 5 — 411 Карно — Остроградского теорема 1 — 403  [c.428]

ТЕОРЕМА [Остроградского — Карно кинетическая энергия, теряемая системой при ударе, равна доле кинетической энергии системы, соответствующей потерянным скоростям о параллельном переносе силы силу, приложенную к абсолютно твердому телу, можно, не изменяя оказываемого действия, переносить параллельно ей самой в любую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, куда сила переносится о проекции производной вектора проекция производной от вектора на какую-нибудь неподвижную ось равна производной от проекции дифференцируемого вектора на ту же ось о проекциях скоростей двух точек тела проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, равны друг другу Пуансо при движении твердого тела вокруг неподвижной точки подвижный аксоид катится по неподвижному аксоиду без скольжения Ривальса ускорение точек твердого тела, имеющего одну неподвижную точку, равно векторной сумме вращательного и осестремительного ускорений Робертса одна и та же шатунная кривая шарнирного четырехзвенника может быть воспроизведена тремя различными шарнирными четырехзвенниками  [c.284]

Теорема о потере ки 1етической энергии (теорема Карно — Остроградского). При мгновенном наложении связей потерянная -кинетическая энергия системы равна кинетической энергии потерянных скоростей  [c.403]

ТЕОРЕМА (Ирншоу система неподвижных точечных зарядов электрических, находящихся на конечных расстояниях друг от друга, не может быть устойчивой Карно термический КПД обратимого цикла Карно не зависит от природы рабочего тела и являегся функцией абсолютных температур нагревателя и холодильника Кастильяно частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы Кельвина сила (или градиент) будет больше в тех точках поля, где расстояние между соседними поверхностями уровня меньше Кенига кинетическая энергия системы равна сумме двух слагаемых — кинетической энергии поступательного движения центра инерции системы и кинетической энергии системы в ее движении относительно центра инерции Клеро с уменьшением радиуса параллели поверхности вращения увеличивается отклонение геодезической линии от меридиана Кориолнса абсолютное ускорение материальной точки рав1Ю векторной сумме переносного, относительного и кориолисова ускорений Лармора единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и вектора орбитального магнитного момента электрона с некоторой угловой скоростью, зависящей от внешнего магнитного поля, вокруг оси, проходящей через ядро атома и параллельной вектору индукции магнитного поля Остроградского — Гаусса [для магнитного поля магнитный поток сквозь произвольную замкнутую поверхность равен нулю для электростатического поля <в вакууме поток напряженности его сквозь произвольную  [c.283]


Лагранж в Аналитической механике рассмотрел многие вопросы этой науки, но одна интересная задача теории удара была оставлена им в стороне частный случай ее был изучен вскоре Л. Карно. В мемуаре К общей теории удара (1854 г., опубликовано в 1857 г.) Остроградский исследовал удар систем в предположении, что возникшие в момент удара связи сохраняются и после него. Он распространил здесь принцип возможных пере-мегцений на явление неупругого удара и получил основную формулу аналитической теории удара, из которой легко получается ряд теорем, решение упомянутой задачи и, в частности, обобщение одной теоремы Карно.  [c.222]

Примечание 2. Понятие внутренней энергии в классической механике неявно фигурирует в стереомеханической теории удара, в частности в теоремах об энергии Карно-Остроградского. В неупругой фазе удара часть кинетической энергии трансформируется во внутреннюю энергию, а фаза восстановления представляет в некотором смысле обратный процесс. Пример с трансформацией внешней энергии во внутреннюю и обратно (но уже с другой целью) в задаче о движении летательного аппарата с прямоточным воздушно-реактивным двигателем имеется в работе [13], где показано, что энергия, выделяющаяся при внешнем трении и используемая как внутренняя энергия для создания реактивных сил, может обеспечить при некоторых условиях ускоренное движение ракеты, несмотря на наличие сил сопротивления и отсутствие других ускоряющих сил, кроме реактивной.  [c.207]


Курс теоретической механики. Т.2 (1977) -- [ c.471 ]



ПОИСК



Карни

Карно

Остроградский

Теорема Аполлония Карно — Остроградского

Теорема Апполония Карно-Остроградского

Теорема Карно

Теорема Остроградского

Теорема Остроградского — Карно об изменении кинетической энергии при ударе



© 2025 Mash-xxl.info Реклама на сайте