Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Световой поток, измерение

Измерение силы и направленности светового потока Измерение количества топлива, колесной мощности автомобиля, крутящего момента двигателя Измерение тормозной силы на колесах, усилия на тормозной педали, замедления автомобиля  [c.124]

Возьмем отношение светового потока, измеренного в люменах, к лучистому потоку, измеренному в ваттах  [c.229]

При измерении дымности ОГ дизелей нашли применение два метода фильтрации потока ОГ определенного объема с последующим измерением степени черноты фильтра оптическим путем и метод, основанный на измерении оптических характеристик ОГ, которые зависят от ослабления светового луча при прохождении через измерительную трубку (кювету) или рассеивания светового потока содержащимися в газовом потоке частицами.  [c.23]


Все остальные фотометрические величины являются производными. Исходя из единицы силы света, можно определить единицы измерения остальных величин. В формуле йФ (dil, подставляя / = 1 св, dQ 1 стерадиан (ср), получим единицу измерения светового потока, называемую люменом (лм)  [c.14]

Часто возникает необходимость измерять фотометрические величины в энергетических единицах. Для этого достаточно перейти от светового потока к энергетическому. Пользуясь известными соотношениями между фотометрическими величинами, легко установить энергетическую единицу измерения для каждой из них. В этом случае (в системе СГС) световой поток, сила света, освещенность (а также светимость) и яркость будут измеряться соответственно в  [c.15]

Раздел оптики, занимающийся измерениями световых величин, называется фотометрией. Приборы, приспособленные для измерения силы света или световых потоков разных источников, называются фотометрами. По принципу регистрации фотометры бывают двух типов субъективные (визуальные) и объективные.  [c.17]

Для того чтобы удовлетворить требованиям к спектральным свойствам фотоэлемента (г.е. обеспечить достаточную его чувствительность в заданной области спектра), приходится использовать фотокатоды сложного состава. Так, например, для измерений световых потоков в видимой и близкой ультрафиолетовой  [c.436]

Для повышения чувствительности иногда наполняют колбу фотоэлемента каким-либо газом, не вступающим в реакцию с веществом фотокатода. В таких газонаполненных фотоэлементах выбитые из катода электроны при своем движении к аноду ионизируют атомы г аза. Образующиеся в газе ионы и электроны движутся к электродам фотоэлемента, заметно увеличивая исходный фототок. Чувствительность таких устройств велика (она достигает 500 мкА/лм), но их вольт-амперная характеристика имеет более сложный вид, чем обычная зависимость силы фототока от приложенной разности потенциалов, и часто не соблюдается пропорциональность силы фототока и светового потока. Другим недостатком газонаполненных фотоэлементов является их инерционность, приводящая к искажению фронта регистрируемого сигнала и ограничивающая возможность измерения модулированных и быстроизменяющихся световых потоков. При частоте модуляции в несколько килогерц обычно уже невозможно использование газонаполненных фотоэлементов.  [c.437]

Если мы рассмотрим схему таких измерений на основе метода Юнга (рис. 6. 48), то найдем ответ на вопрос, почему в этой схеме столь мало света, что возникают серьезные трудности с ее лекционной демонстрацией. Простые оценки показывают, что световой поток в интерферометре должен быть столь мал, что его средняя энергия <И не превышает одной десятитысячной от энергии кванта /iv. А это значит, что в каждую секунду излучается 10 — 10 фотонов, способных интерферировать. Если исходить из равномерного во времени их испускания, то между каждым попаданием такого фотона в интерферометр проходит Ю" — 10" с, в то время как путь его до приемника, как правило, не превышает 50 см, т.е. должен занимать менее 10" с. Следовательно, интерферометр подавляющую часть времени пуст, а пролетающий через него каждую микросекунду одиночный фотон попадает в одну из двух щелей с вероятностью, определяемой условиями эксперимента. Наблюдение за более длительный промежуток времени и дает на выходе статистическое усреднение, т.е. интерференционную картину.  [c.451]


Объективные (фотоэлектрические) фотометры за последние годы получают все большее и большее развитие, постепенно вытесняя приборы, основанные на визуальных методах измерения. Мы познакомимся более подробно с этими приборами в главе о фотоэффекте. Укажем только, что все они основаны на зависимости, в силу которой фотоэлектрический ток прямо пропорционален поглощенному фотоэлементом световому потоку. Поэтому шкалу электроизмерительного прибора, соединенного с фотоэлементом, можно градуировать непосредственно в тех или иных фотометрических единицах, например в люксах.  [c.56]

Аналогичные опыты с квантами видимого света затруднены тем, что кванты эти малы. Однако к световым квантам очень чувствителен глаз хотя глаз не реагирует на один отдельный квант, но опыты показывают, что необходимое для минимального светового ощущения число квантов в секунду не очень значительно. По измерениям С. И. Вавилова, в области максимальной чувствительности глаза (550 нм) для отдохнувшего глаза пороговая чувствительность в среднем составляет около 200 квантов, падающих за 1 с на зрачок наблюдателя. В этих условиях, как показали опыты Вавилова, удается наблюдать флуктуационные колебания светового потока, имеющие ясно выраженный статистический характер. Хотя в таких опытах и нельзя однозначно отделить квантовые флуктуации светового потока от флуктуаций, связанных с физиологическими процессами в глазу, тем не менее и они могут рассматриваться как подтверждающие квантовый характер явления кроме того, эти опыты дают результаты, существенные для исследования свойств живого глаза. В частности, с их помощью удалось установить, что число квантов, которые должны поглощаться в сетчатке при пороговом раздражении, раз в 9—10 меньше числа квантов, падающих на зрачок, и составляет примерно 20 в секунду.  [c.643]

Процесс умножения повторяется, и т. д. Вторичные электроны с последнего из электродов (динодов), а их бывает до 10—15, собираются на анод. Общий коэффициент усиления таких систем достигает 10 —10 , а интегральная чувствительность ФЭУ достигает тысяч ампер на люмен. Это, конечно, не означает возможности получения больших токов, а свидетельствует лишь о возможности измерения малых световых потоков.  [c.651]

Однако точное измерение светового потока осложнялось рядом побочных явлений. Наиболее существенным  [c.185]

При проведении абсорбционного анализа с использованием закона Бугера — Ламберта — Бера необходимо измерить зависимость интенсивностей входящего и выходящего из раствора световых потоков от длины волны монохроматического излучения. Основная трудность при таких измерениях состоит в том, что ослабление интенсивности света при прохождении через кювету связано не только с поглощением его растворенным веществом, но и с изменением его первоначального направления при отражениях от поверхностей стенок кюветы, а также в результате рассеяния поглощающей средой.  [c.189]

Таким образом, при использовании двух тождественных кювет, путем измерения световых потоков, прошедших через рабочую  [c.190]

Рис, 71, Зависимость отношения относительных ошибок измерений оптической плотности и интенсивности светового потока от величины пропускания  [c.192]

Приготовленные таким способом образцы помещались в рабочую часть оптической печи [4], позволяющей осуществлять быстрый внешний нагрев и охлаждение в воздушной среде. После того как образцы приобретали рабочую температуру, к ним подвешивался груз, снимались показания длины и одновременно отсекался световой поток, нагревающий образец. С этого момента проводилось термоциклирование образцов. В результате минутного охлаждения и последующего минутного нагревания устанавливалась форма термоцикла, близкая к трапецоидальной, с выдержкой при экстремальных температурах —7 с. Скорости охлаждения составляли 15° С/с. Образцы исследовались при двух режимах температур 1250-> 500° С и 1400-> 600° С. При построении графиков использовались данные, полученные усреднением 3—5 измерений при каждой смене нагрузки. Разброс не превышал 12 /q от найденного среднего. Ползучесть молибдена, наблюдаемая при температуре 1250 - 500° С, в основном описывается линейной зависимостью. Повышение температуры испытания до 1400 -> 600° С не меняет характера зависимости Некоторое отклонение от линейности для обоих интервалов, температур, наблюдаемое на первых термоциклах, обусловлено сжатием толстым покрытием (примерно 20% от сечения образца) молибденовой основы. При этом между ними возникают зна-и тель-ные остаточные напряжения [5].  [c.205]


Наряду с измерением деформации имеется возможность вести микроскопическое наблюдение за кинетикой механизма деформации и разрушения исследуемого материала при очень высокой температуре. Для наблюдения в отраженном свете используется шаровая ртутно-кварцевая лампа сверхвысокого давления ДРШ-250, дающая световой поток высокой интенсивности, и монохроматический светофильтр, пропускающий световой поток в узком диапазоне длин волн.  [c.90]

Для количественного анализа проблемы освещения необходимо знать единицы измерения. Освещенность могла бы определяться в ваттах на квадратный метр поверхности, но при этом не учитывалось бы свойство человеческого глаза по-разному воспринимать различную длину волн светового спектра. Для того чтобы учесть это свойство, была введена единица люмен (лм). Световой поток Ф источника света в люменах, имеющего спектр энергии РЩ в ваттах на единицу интервала волнового спектра, равен  [c.265]

Фотографический метод. Поскольку в любой данный момент времени в потоке воздуха содержится множество сферических частиц, измерение их турбулентных характеристик является весьма специфической задачей. Для ее решения применим фотографический метод последовательной съемки. Через верхнюю стенку канала вертикально вниз вдоль его оси пропускается плоский. луч света, ограниченный ще.лью шириной 1,6 мм. В качестве линейного источника света используется импульсная лампа высокоскоростного стробоскопа, обеспечивающего частоту вспышек 5000—8000 сек Световой поток коллимируется ци.линдри-  [c.88]

Для устранения этих трудностей Д. Я. Светом был предложен модуляционный рефлектометрический метод измерения коэффициента отражения, который позволяет исключить влияние самоизлучения исследуемой (поверхности. Предварительная модуляция светового потока от вспомогательного источника исключает собственное излучение поверхности покрытия. В работе [130] предложен относительный метод модуляционной рефлектоме-трии, позволяющий измерять коэффициенты диффузионного отражения.  [c.163]

Как показали соответствующие измерения, кривая чувствительности глаза (функция вндиости) изображается колоколообразной кривой (рис. 1.4) с резко выраженным максимумом при длине волны 5550 А, спадающей до нуля в сторону красного и фиолетового света. Максимум функции вндиости, как уже отмечено, условно принятый равным единице, соответствует длине волны = 5550 А. Поэтому целесообразно найти связь между люменом и ваттом при этой длине волны. При длине волны = 5550 А световому потоку в 1 лм соответствует мощность 0,0016 Вт, т. е.  [c.16]

Следовате.п.но, измерение потока лучистой энергии всегда требует тщательного анализа условий эксперимента. К сказанному нужно добавить, что большинство приемников радиации селективно, т. е. неодинаково реагирует на излучение различных длин волн. Это также надо учитывать при опытах, проводимых для сравнения потока лучистой энергии в разных участках спектра. Еще большие трудности возникают в том случае, когда измеряют абсолютное значение светового потока или создаваемую им освеп1енность. Для этого необходимо проградуировать используемый приемник радиации, что совсем не просто.  [c.43]

Вопрос о связи между испускательной и поглощательной способностями различных тел подлежит детальному выяснению. Весьма простые опыты показывают, что чем больше энергии поглощает тело, тем больше оно излучает. Для демонстрации этой особенности теплового излучения измеряют поток световой энергии от двух стенок полого металлического i yoa, заполненного теплой водой (рис. 8.2). Одна из стенок, снаружи блестящая — она много света огражает и мало поглощает. Друг ая С1 енка зачернена. Ее коэффициент поглощения велик. Фотоприемник (термостолбик), соединенный с чувствительным гальванометром, поочередно подносится к двум этим стенкам куба, и отброс гальванометра, регистрируемый при измерении интенсивности излучения зачерненной стенки, во много раз больше, чем при измерении светового потока от блестящей стенки.  [c.403]

Обратимся теперь к весьма важному вопросу о практическом использовании фотоэффекта. В современном. жсперименте фо-то.элс>сгрпческие измерения световых потоков широко применяют во всем оптическом диапазоне. Измерения базируются на законах фотоэффекта, из которых в данном случае наиболее важна строгая пропорциональность силы тока насыщения и светового потока. Для измерений используют различные устройства, правильная оценка возможностей которых часто оказывается совсем не простой.  [c.436]

Сила тока на выходе ФЭУ может быгь усилена обычными радиотехническими методами. После )roio фототок фиксируется тем или иным способом. Часто используют электронные потенциометры, проводящие непрерывную запись сигнала. В последние годы для этих целей широко применяют цифровые вольтметры и другие более сложные устройства, позволяющие так регистрировать сигнал, чтобы результаты измерений сразу могли быть обработаны электронно-вычислительной машиной. Существуют методы, позволяющие измерять с помощью Ф ЭУ очень малые световые потоки (метод счета фотонов и др.).  [c.439]

Во многих случаях достаточно знать среднюю сферическую силу света, т. е. значение полного потока, посылаемого источником, а не его распределение по различным направлениям. Такое измерение может быть произведено в так называемых интегральных фотометрах. Одним из таких фотометров служит шаровой фотометр Ульбрехта. Исследуемый источник подвешивается внутри полого шара К (рис. 3.14), внутренняя поверхность которого покрыта белой матовой краской. Белый матовый экран 5 защищает отверстие О на поверхности шара от действия прямых лучей источника. Если отражение света от внутренней поверхности шара К следует закону Ламберта, то освещенность Е отверстия О пропорциональна полному световому потоку Ф лампы  [c.60]


В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием — фотоэлементы. Они находят весьма широкое применение в технике и в научных исследованиях. Самые разные объективные оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотометрия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии и т. д. трудно представить себе без применения фотоэлементов регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используются фотоэлементы в технике контроль и управление производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов для решения разнообразнейших технических вопросов в,современной промышленности и связи.  [c.649]

В зависимости от материала фотокатода и материала колбы фотоэлемента их можно применять в диапазоне 0,2—1,1 мкм. Их интегральная чувствительность лежит в пределах 20—100 мкА на 1 лм светового потока, а термоэмиссия — в пределах 10 — 10" А/см . Очень важным достоинством вакуумных фотоэлементов является их высокое постоянство и линейность связи светового потока с фототоком. Поэтому они длительное время преимущественно использовались в объективной фото.метрии, спектрометрии, спектрофотометрии и спектральном анализе в видимой и ультрафиолетовой областях спектра. Главным недостатком вакуумных фотоэлементов при световых измерениях следует считать малость электрических сигналов, вырабатываемых этими приемниками света. Последний недостаток полностью устраняется в фотоэлектронных умножителях (ФЭУ), представляющих как бы развитие фотоэлементов. ФЭУ были впервые построены в 1934 г.  [c.650]

Большим преимуществом всех приемников света, использующих внешний фотоэффект, является то обстоятельство, что их фототок не изменяется при изменении нагрузки. Это означает, что при малых значениях фототока можно применить практически сколь угодно большое сопротивление нагрузки и тем самым достичь значения падения напряжения на нем, достаточно удобного для регистрации и усиления. С другой стороны, заменяя сопротивление на емкость, можно, измеряя напряжение на этой емкости, получать величину, пропорциональную усредненной величине светового потока за заданный интервал времени. Последнее чрезвычайно важно в тех случаях, когда необходимо измерить световой поток от нестабильного источника света — ситуация, типичная для спектроаиалитиче-ских измерений.  [c.651]

Известно, что точность всех электрических измерений ограничивается уровнем флуктуаций тока и напряжения в измерительном устройстве, определяемом как внутренними электрическими шумами самого устройства, так и флуктуациями измеряемой величины. В фотоэлектрических уст1)ойствах электрические шумы также ограничивают их точность и предел чувствительности. Хотя разработаны методы, позволяющие с помощью фотоэлектронных приборов измерять довольно слабые световые потоки (например, одноэлектронный метод), однако не следует думать, что любой сколь угодно малый световой сигнал может быть фотоэлектрически зарегистрирован и измерен. Электрические шумы, природа которых может быть весьма различна, ограничивают возможность измерения сверхслабых световых сигналов. Из всех возможных причин, влияющих на предел чувствительности фотоэлектрических измерений, коротко остановимся на двух, связанных с тепловым движением электронов и конечностью заряда электрона.  [c.176]

Перед измерением освещенности по отдельным рядам трубного пучка следует убедиться в равномерности распределения светового потока в плоскости светового окна. С этой целью с помощью автотрансформатора подается напряжение на лампы накаливания. Оно не должно быть высоким во избежание сильного нагревания модели,, которое приводит к погрешностям измерения светового потока. Фотоэлемент устанавливается непосредственно перед свр.товым окном, и производится измерение светового потока в нескольких местах вдоль поверхности матового стекла. Среднее значение этой величины принимается за расчетное. После этого измеряется локальная освещенность плоскости а — а за первым рядом. Для этого фотоэлемент с помощью коорди-натника устанавливается непосредственно за трубами, затем он перемещается с шагом примерно 5 мм за трубами первого ряда. По измеренным световым потокам определяются местные значения угловых коэффициентов плоскости, расположенной непосредственно за первым рядом. По этим значениям строится график распределения угловых коэффициентов. Основанием графика является поперечный шаг между трубами. Затем опре-  [c.380]

Количество шлаковых включений определяли с помощью автоматического структурного анализатора Эпиквант путем сканирования тонкого (0.4 мкм) светового луча по поверхности шлифа. Отраженный световой поток фотоэлектронным умножителем пропорционально преобразовыва.лся в электрический ток. В процессе измерения фиксировались общая длина линии измерения Ь, длина пересечения  [c.114]

Термоэлектрический эффект используется также для измерения температур (термопары), и при других измерениях, которые могут быть сведены к измерению температуры. В тепловых фотоприемниках (термоэлементах) свет поглощается зачерненной приемной площадкой, к которой присоединен спай термопары, и нагревает их. По величине возникающей термо-э.д.с. можно определить мощность светового потока. В тепловых амперметрах ток пропускается через спай термопары и нагревает его. По величине возникающей при этом термо-э. д. с. определяется сила тока. В вакуумметрах через металлический проводник, к середине которого присоединен спай-термопары, пропускается фиксированный ток. Температура спая будет различной в зависимости от теплопроводности окружаюп1,ега газа. Последняя же определяется давлением газа. Поэтому, измеряя возникающую термо-з. д. с., можно определить давление газа. Этим методом удобно измерять давления в дапазоне 10 —10 Па.  [c.263]

Для определения различных цветовых оттенков и блеска был сконструирован прибор Миниреф (Miniref). Его применяют для лакокрасочных покрытий, пластмасс и анодированного алюминия. Работа прибора основана на принципе фотометрического метода, заключающегося в измерении светового потока, отраженного от контролируемой поверхности при ее освещении лампами постоянного тока, с точно установленными геометрическими и спектральными условиями. Зная значения световых потоков отраженных пучков света, можно выбрать масштаб объективного определения цвета и оценки блеска. С помощью этого прибора в процессе производства можно проводить технологические изменения для достижения требуемого оптического качества поверхности.  [c.90]

Иитерферометрический метод. В этом оптическом методе применен луч монохроматического света, который направлен на границу между покрытием и основным слоем точно таким же образом, как в микроскопическом методе исследования с помощью светового потока. Но вместо измерения отношения отраженного луча микроскоп используется для установления количества интерференционных колец, создаваемых при рассеивании света под действием уступа на границе покрытия. Число колец, умноженное на половину длины волны использованного светового луча, составляет толщину покрытия.  [c.140]


Возникает вопрос, каким образом привести в соответствие субъективные величины, оцениваемые по производимому ощущению, с прямыми энергетическими величинами. Для этого, очевидно, следует учитьшать только ценную часть, а не всю энергию излучения источника света, поскольку всякий источник, в особенности тепловой, подавляющую часть энергии излучает вне видимой области спектра. Выбрав определенный узкий участок спектра, следует измерить энергию, излучаемую в этом участке, и ют световой поток, который при данной энергии получается. Задача осложняется тем, что измерешя приходится сочетать с субъективными наблюдениями, а так как у разных людей заметно отличается чувствительность к различным цветам, то приходится производить измерения, привлекая большое число наблюдателей  [c.298]

Лоск бумаги, %. Определение (ГОСТ 12921—67) основано на отношении светового потока, зеркально отраженного испытуемым образцом бумаги, к световому потоку, отраженному при тех же условиях эталоном лоска (черное полированное стекло), принимаемому эа 100%. Измерение производят на фотоэлектрическом приборе ФБ-1, снабженном датчиком лоска. Результат определяют каг среднее значение испытаний нятп образцов.  [c.352]

При измерении жесткого -излучения метод модуляции с использованием вращающегося свинцового прерывателя конструктивно неудобен, так как толщина и вес этого прерывателя весьма значительны. Кроме этого, при указанном способе измерения сравниваемые потоки излучения должны обязательно пересекаться, что не всегда может быть выполнено по условиям измерения. Нами был осуществлен второй вариант прибора, в котором тот же принцип измерения осуществляется без применения тяжелого свинцового прерывателя (рис. 4). В приборе используются два фосфора и Ф . На один из них направляется измеряемый поток излучения Fj, на второй — эталонный F,. Световые потоки фосфоров прерываются легким непрозрачным нолудиском (А) и поочередно попадают на фотокатод умножителя. В остальном действие прибора аналогично действию описанного выше.  [c.131]


Смотреть страницы где упоминается термин Световой поток, измерение : [c.484]    [c.126]    [c.69]    [c.310]    [c.403]    [c.636]    [c.119]    [c.380]    [c.73]    [c.123]    [c.141]    [c.78]   
Производство электрических источников света (1975) -- [ c.445 ]



ПОИСК



Световой поток



© 2025 Mash-xxl.info Реклама на сайте