Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Грина теорема интегрального уравнени

Начнем с определения функции Грина, формулировки ее свойств, в частности, теоремы взаимности. Формулы этого параграфа, как правило, не решают задач дифракции, а лишь дают выражения для искомых полей через заданные токи (или граничные значения) в виде интегралов, зависящих от координат точки наблюдения, как от параметра. Ядрами интегралов являются соответствующим образом введенные функции Грина. Эти интегральные выражения позволят нам далее написать интегральные уравнения для искомых полей.  [c.105]


Исследование дифференциальных уравнений математической физики в конечной области пространства обычно проводится с помощью перевода их в интегральные уравнения с подходящей функцией Грина [28, 29]. Это обстоятельство объясняется тем, что исходный дифференциальный оператор является неограниченным, тогда как функция Грина в конечной области пространства, удовлетворяющая соответствующим граничным условиям, порождает не только ограниченный, но вполне непрерывный оператор, т.е. оператор с квадратично интегрируемым ядром [45]. Этот оператор можно представить как предел конечномерных операторов и, следовательно, перенести на него (а, тем самым, и на исходный дифференциальный оператор) все существенные теоремы алгебры конечномерных пространств [45] (существование собственных функций, их полнота и разложение по базису, альтернатива Фредгольма, теория возмущений и т.д.).  [c.68]

В связи с вышеизложенным, получим аналитическое решение системы уравнений (2.30) с построением функций Грина для перемеш,ений и (а), v(a). Для решения данной задачи воспользуемся аппаратом интегральных преобразований Лапласа, где оригиналами выступают перемеш,ения и а), v(a). Согласно теореме о дифференцировании оригинала [103] будем иметь  [c.90]

Если для формулировки алгоритма непрямого МГЭ нам достаточно было воспользоваться простыми физическими соображениями и приемом введения фиктивной системы в неограниченной области, то прямой метод требует более изощренного подхода, который оказывается тесно связанным с использованием интегральных тождеств [7], например второй формулы Грина — уравнение (2.20) и теоремы взаимности Бетти — уравнение (2.30). Тем не менее в обоих методах для определения компонент матричных ядер в окончательных системах уравнений используются те же самые фундаментальные решения для неограниченной области.  [c.50]

Полагая G = f и используя уравнение (4.2.9) в соотношении (4.2.1), получаем интегральную теорему Гельмгольца — Кирхгофа (которую называют также теоремой Грина)  [c.254]

Используя функцию Зоммерфельд получил с помощью теоремы Трина для вакуума правильное интегральное уравнение (2.95). Мы же рассматриваем более общий случай — радиально-неоднородную усиливающую среду. Функция Грина в этом случае должна удовлетворять уравнению  [c.99]

Если Я = 0 — собственное значение оператора А, а целью является приближенное решение внешней задачи Дирихле, то можно поступить следующим образом. Заменим область на V E , где Яе —шар малого радиуса, лежащий внутри V , и подчиним решение условию ди/дг- - и = 0 на его внешней поверхности Sj с р = onst, ImP<0. Можно проверить, что модифицированная таким образом задача (36.1) — (36.3) с Я = 0 однозначно разрешима и эквивалентна интегральному уравнению Лф = , в котором А уже не имеет собственного значения 0. Ядро оператора А имеет вид G x, у) а у), где G (х, i) — функция Грина для уравнения Гельмгольца в дополнении к E с указанным выше условием на Sg и условием излучения на бесконечности. Функция G(x, y) — G x — y) принадлежит С°° при х, у (см. [3], гл. III), так что А —А—бесконечно сглаживающий оператор. Поэтому для А сохраняются теоремы 1 и 3 и их следствия. Функцию G x, у) можно выписать в явном виде (см. [67]).  [c.358]


Последовательность решений фн равномерно ограничена (в силу принципа максимума) и равностепенно непрерывна при /г < /го в каждой подобласти Сьо последнее следует из интегрального представления фь с помощью функции Грина в Сьо- Поэтому в силу теоремы Арцела последовательность фн при /г О сходится к непрерывной функции (всюду кроме отрезка линии вырождения и точки разрыва в области эллиптичности), ограниченной в замкнутой С, которая, в силу интегрального представления, дважды непрерывно дифференцируема в С, следовательно, является регулярным решением дифференциального уравнения, принимающим заданные граничные значения всюду, кроме точек разрыва граничной функции и отрезка линии вырождения. Если граница области содержит этот отрезок (как, например, показано на рис. 3.13), то непрерывность ф в точках непрерывности ф дс на этом отрезке доказывается, как и в [92], с помощью барьера (который существует в точках звуковой линии как для уравнения Чаплыгина, так и для уравнения Трикоми — и вообще для всех линейных эллиптических уравнений трикомиевского типа вырождения (1.32)).  [c.92]

Специальные вопросы, связанные с численным решением уравнений эллиптического типа в окрестности выпуклого угла, обсуждали Вудс [1953], Вазов [1957], Лаасонен [1958а, 19586] и другие авторы. Для того чтобы продемонстрировать сходимость решения разностного уравнения в случае конечного числа разрывов функции Лаасонен [19586] рассматривал решение уравнения Пуассона, записанное в интегральной форме при помощи функции Грина (см. Вейнбергер [1965]). Доказанная им теорема требовала, чтобы решение дифференциального уравнения для 5 было кусочно непрерывно и чтобы разрывы находились между узловыми точками сетки. Второе из этих условий не удовлетворяется в наших разрывных постановках для Однако необходимость этого условия не была доказана.  [c.263]


Смотреть страницы где упоминается термин Грина теорема интегрального уравнени : [c.518]    [c.120]   
Теория теплопроводности (1947) -- [ c.251 ]



ПОИСК



Грина

Грина теорема уравнения

Теорема Грина

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте