Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление в балках разрушению

Расчет балок на чистый изгиб по предельному состоянию. Поставив требование, чтобы наибольшие напряжения не превосходили допускаемых, мы обеспечиваем гарантию того, что эти напряжения не достигнут для балок из хрупких материалов временного сопротивления, а для балок из пластичных материалов — предела текучести. Иными словами, при таком расчете за предельное состояние балок из хрупкого материала принимается состояние по рис. 97, а, а для балок из пластичного материала — по рис. 97, б (при одинаковом Ст для растяжения и сжатия). Представленное на рис. 97, а состояние балки из хрупкого материала можно действительно считать предельным, так как при нем начинается разрушение балки. Что касается состояния, представленного на рис. 97, б, то рассматривать его как предельное можно лишь условно, в том смысле, что в этом состоянии в балке начинают развиваться пластические дефор.мации. Однако это обстоятельство не может ни повлечь за собой значительного увеличения прогибов, ни отразиться на грузоподъемности балки, так как в этом состоянии пластически деформируются лишь крайние волокна балки, все же остальные испытывают упругие деформации. При дальнейшем увеличении изгибающих моментов крайние волокна, правда, деформируются без существенного увеличения напряжений, зато в остальных напряжения могут увеличиваться по крайней мере до От- В результате начинают пластически деформироваться волокна, ближайшие к крайним, затем ближайшие к названным и т. д. Таким образом, пренебрегая возможностью незначительного роста напряжений после достижения величины От, можно представить последовательное изменение напряженного состояния эпюрами, изображенными на рис. 98 пунктиром. Иными словами, пластическая деформация, начавшись у поверхности балки, при дальнейшем росте изгибающих моментов постепенно распространяется вглубь.  [c.174]


Так как большое число деталей машин и элементов конструкций (вращающиеся валы и оси, подкрановые балки, несущие узлы транспортных установок и т. д.) работает при переменных во времени напряжениях и за весь срок службы число циклов нагружения достигает 10 —10 и более, то наиболее вероятным эксплуатационным повреждением для них оказывается многоцикловое усталостное. Усталостное разрушение начинается обычно в зонах с максимальными амплитудами циклических напряжений или в местах технологических дефектов (поверхностных, сварочных). Трещины усталости при указанных выше базах по числу циклов, возникают и распространяются при номинальных напряжениях ниже предела текучести. Расчетными характеристиками при определении прочности и ресурса в этих случаях являются пределы выносливости и кривые многоцикловой усталости с отражением роли конструктивных, технологических и эксплуатационных факторов (абсолютные размеры сечений, асимметрия цикла, концентрация напряжений, среда, состояние поверхности и др.) [2, 3]. В связи с разбросом характеристик сопротивления усталости а  [c.11]

Наконец, следует отметить, что на хрупкость материала могут очень сильно влиять так называемые остаточные напряжения, которые могут получиться в материале при закалке, при холодной прокатке или при недостаточной температуре горячей прокатки, когда материал получает наклеп. Опытами на растяжение такие напряжения, как правило, не могут быть выявлены. Остаточные напряжения обычно связаны с возникновением объемного напряженного состояния в материале в связи с этим возможно хрупкое разрушение. Такие случаи встречались при изготовлении мощных двутавровых балок со сравнительно тонкими полками. В нашей практике был случай хрупкого разрушения двутавровой балки № 50 при сбрасывании ее на землю в морозный день. Результаты статических испытаний, химического и металлографического анализа показали, что материал как будто вполне доброкачественный. Лишь ударные испытания при различных температурах обнаружили резкую хладноломкость для образцов, вырезанных у края полки двутавра,— в наиболее наклепанном месте. Что касается влияния на хрупкость химического состава сталей, то ударная вязкость понижается, как это видно из таблицы 21, с увеличением количества углерода, т. е. с повышением предела прочности и уменьшением пластических свойств стали. Весьма неблагоприятно отражается на сопротивлении удару, особенно при низких температурах, наличие фосфора. Поэтому на практике при изготовлении материала для деталей, работающих на удар, всячески ограничивают примесь этого элемента.  [c.533]


Конструкция прикрепления дополнительного поясного листа значительно влияет на сопротивление усталости сварных балок [20, 249]. Сравнительные испытания сварных балок двутаврового сечения из стали СтЗ с различной конструкцией крепления (рис. 68, а—ж) обрываемого поясного листа (без его скоса и со скосом) проводили [20] по числу циклов до разрушения при напряжении а ,ах = 17 кгс/мм Ra = 0,4—-г-0,5). Наиболее высокую усталостную прочность имели балки без скоса листа со швами, обработанными абразивным кругом (рис. 68, в, г, д), не получившие разрушений при Л/ < 2 -10 циклов, тогда как балки без обработки шва (рис. 69, а, б) разрушились. Таким образом показано преимущество косых швов по сравнению с прямыми. Скос (не более 1 10) поясного листа (см. рис. 68, ж) заметно повышает сопротивление усталости балок. В работе [249] также показано, что предел выносливости сварных балок можно повысить использованием различных форм концов поясных листов и наложением швов (табл. 26).  [c.123]

Для определения сопротивления хрупкому разрушению в момент начальной неустойчивости треш,ины в течение нескольких лет применяли мелкие образцы. Возможность использования этих образцов и для определения сопротивления хрупкому разрушению в момент остановки треш,ины зависит от формы кривых скорости освобождения энергии G и скорости изменения сопротивления хрупкому разрушению R. В табл. 4 схематически обобщены характеристики G, полученные на мелких образцах, в виде кривых и показано, на каких образцах возможна остановка трещины. Например, если рассматривается разрушение в материале, не чувствительном к скорости, при заданном перемещении, то образцы, пригодные для определения условий остановки, должны иметь кривую G — I, которая вначале поднимается (после начального неустойчивого роста), а затем падает. Только при таком сочетании условий кривые G я R пересекаются в точке остановки трещины. Анализируя данные табл. 4, замечаем, что это происходит только на образцах двух типов, а именно, на образце с одним боковым надрезом на кромке (SEN) и на образцах в виде двухконсольной балки (ДСВ) при условии фиксированного перемещения. Другие образцы могут также обеспечивать остановку трещины, но требуются другие условия. Рассмотрим их подробно.  [c.49]

Gi — критическое значение G, соответствующее сопротивлению хрупкому разрушению в условиях плоской деформации h — толщина балки  [c.63]

Ходовая часть. В ходовой части особенно чувствительны к изменению окружающей температуры амортизаторы. При снижении температуры вязкость амортизаторной жидкости растет, вследствие чего увеличиваются сопротивление амортизатора, а также усилия, нагружающие детали амортизатора. Появляется опасность разрушения амортизатора. Одновременно увеличение сопротивления амортизатора приводит к увеличению жесткости подвески, нарушению плавности движения. Поэтому при подготовке автомобиля к эксплуатации в условиях низких температур в амортизатор надо заправлять маловязкую жидкость, а при особо низких температурах выключать амортизаторы, отъединяя стойку амортизатора от балки моста.  [c.247]

Характер движения железобетонных балок связан в первую очередь с интенсивностью нагружения, которая определяет возникновение упомянутых стадий работы материала. Все стадии, кроме первой, требуют учета пластических деформаций, причем во второй и третьей стадиях возможен затухающий колебательный процесс. В случае потери несущей способности можно применять результаты жестко-пластического анализа, принимая за предельный пластический момент соответствующее предельное значение для железобетонных сечений. Аналогичным образом рассмотрена задача о движении хрупко разрушающейся балки, причем зависимость между углом поворота и моментом принята в виде билинейного закона разупрочнения. Поскольку согласно этой диаграмме сопротивление с ростом прогибов падает и в конечном счете становится равным нулю, для каждого вида нагружения можно указать определенную величину прогиба, при превышении которой произойдет разрушение конструкции.  [c.317]

Осмотром устанавливают прямолинейность элементов металлоконструкции, правильность положения пролетной балки, башни, стрелы в вертикальной и горизонтальной плоскостях. Изогнутые элементы не обеспечивают достаточного сопротивления действию усилий сжатия. Выпучивание листов боковых стенок в листовых конструкциях может повлечь за собой разрушение всей конструкции.  [c.12]


В работе Замечания относительно сопротивления бруса, подверженного силе, нормальной к его длине (1855 г.) впервые Д. И. Журавским деется теория расчёта касательных напряжений в балках с поперечной нагрузкой соответствующая формула носит его имя. Д. И. Журавский впервые показал возможность разрушения балок не только от разрыва волокон, но и от продольного расслаивания под действием, как теперь принято говорить, касательных напряжений, особенно опасных для деревянных балок им же создана теория расчёта составных балол, соединяемых шпонками или заклёпками.  [c.61]

К поясам прокатных стальных балок часто приваривают накладки для увеличения момента сопротивления сечения и, следовательно, прочности балки при изгибе. Аналогичные шакладки иногда приваривают и к поясам сварных балок, хотя в этом случае удобнее изменять момент сопротивления сечения балки путем соответствующего изменения толщины или ширины поясов. Приваренные накладки. существенно понижают предел выносливости прокатных балок. Например, при наличии накладок, приваренных к поясам балки на протяжении всего пролета угловыми швами, предел выносливости балки при изгибе с режимом нагружения, соответствующим пульсирующему циклу растяжения в нижнем поясе, составляет при 2-10 циклов до разрушения всего 64% предела выносливости простой прокатной балки  [c.248]

Пределы выносливости балок с двусторонними швами, сваренных электродами ЦМ-7, повысились на 26—35% (серии № 7 и 8), а для балок, выполненных сваркой в среде Oj, —до 40% (серия № 10) по сравнению с пределом выносливости балок с неупроч-ненными швами. В еще большей степени, чем сопротивление усталости, повышается долговечность балок. Так, балка, сваренная в среде СОа в исходном состоянии при 0 = 9 кгс/мм , выдержала до разрушения N = 2,7 10 циклов, а после поверхностного упрочнения швов (при том же напряжении) до появления усталостной трещины — 6,4-10 циклов, т. е. в 24 раза больше (рис. 85, б). Для других уровней напряжений долговечность повысилась в 6—9 раз.  [c.156]

В главе обсуждаются экспериментальные методы оценки меж-слойного разрушения композитов. Кроме классического метода испытания на сдвиг с помощью короткой балки представлен ряд методов, основанных на подходах линейно-упругой механики разрушения методы двойной консольной балки, расслоения кромки при растяжении, изгиба балки с надрезом на конце, растяжения составного образца с одинарной и двойной накладками, растяжения полосы с косоугольным центральным надрезом. Каждый метод обсуждается с позиций сопротивления материалов. Такого рода подход прцемлем ввиду сложной природы композитов. Кроме того, в главе обсуждается взаимосвязь между основными экспериментальными даш1ыми и конструкционными свойствами композитов, в том числе рассматриваются критерий разрушения смешанного типа и параметрический анализ, включающий одномерную модель расслоения при выпучивании для оценки взаимосвязи между характеристиками материала и его конструкционными свойствами. Рассмотрены также соотношения между основными показателями свойств полимерного связующего и поведением материала матрицы in situ в составе композита.  [c.193]

Метод короткой балки позволяет измерить кажущуюся меж-слойную сдвиговую прочность композитов. Следовательно, он непригоден для получения исходной информации для проектирования. Тем не менее были случаи применения характеристик, определенных методом короткой балки в качестве допустимых параметров проектирования. Второе ограничение метода оценки сопротивления сдвигу на короткой балке применительно к современным композитам типа графито-эпоксидных вызывает серьезные сомнения относительно его полезности, даже в качестве метода предварительного отбора. В частности, при нагружении тонких однонаправленных образцов-балок (распространенного типа графито-эпоксидных изделий) исчерпание несущей способности не всегда реализуется в виде межслойного разрушения. Результаты подобных испытаний часто публикуются без упоминания вида разрушения при этом подразумевается, что изучаемое межслойное разрушение в эксперименте было реализовано. В качестве альтернативы тонкому образцу для сдвига при трехточечном изгибе были предложены образцы нового типа [1], в том числе толстая балка и балка для четырехточечного изгиба, размеры которой обеспечивают межслойное разрушение  [c.195]

Кроме классических образцов в виде двойной консольной балки в работе [31] для изучения влияния геометрии образца на энергию разрушения была использована усиленная двойная консольная балка. Схема такого образца показана на рис. 4.30. Он представляет собой образец в виде двойной консольной балки, к наружным поверхностям которого после изготовления приклеивают алюминиевые пластины, используя связующее холодного отверждения. Чтобы избежать пластической деформации перед фронтом инициирующей трещины, которая обусловлена наличием полимерного кармана у обреза вкладыша, формирующего эту трещину, перед проведением испытания искусственно вызывают рост инициирующей трещины. На рис. 4.31 и 4.32 представлены результаты, полученные на образцах графито-эпоксидного (As-4/3502) и графито-полиэфирэфиркетонного (АРС-2/РЕЕК) однонаправленных композитов. Отметим наличие поведения типа кривой сопротивления, которое связано с возрастанием при увеличении длины трещины. Исследование поверхности разрушения обнаруживает, однако, наличие большого количества мостиков из волокон, которые и обусловливают рост G, . Данные, обозначенные зачерненными значками на рис. 4.31 и 4.32, получены с помощью эмпирического балочного подхода [уравнение (49)], тогда как обозначенные светлыми значками — методом измерения площади [уравнение (54)]. Хотя длина трещины, при которой G, перестает изменяться, зависит от геометрии образца, условие начала разрушения (величина G, , соответствующая началу роста трещины) не зависит от геометрии образца. Это пороговое значение и представляет, по-видимому, искомую характеристику материала. Как показано в разд. 4.4.7, полученные пороговые значения Gj оказываются равными величинам, измеренным на образцах с тонким адгезионным слоем из чистого связующего.  [c.234]


История науки о сопротивлении материалов шачяшяется с Галилея. В Беседах и математических Еоказательствах (1638 г.) он рассмотрел изгиб консольной балки и изгиб балки, лежащей на двух опорах. Исследуя изгиб консоли, защемленной одним концом в стену и нагруженной силой, приложенной на другом конце (рис. 13), Галилей исходил из того, что опасным сечением будет сечение заделки. Разрушение, по его мнению, происходит в результате появления трещины у верхнего ребра сечения заделки и вращения консоли как жесткого целого вокруг нижнего ребра того же сечения. Именно Б этом предельном состоянии Галилей и рассматривал балку. Сопротивление, обусловленное сцеплением частиц с теми его частицами, которые находятся на стене , Галилей принимал равным абсолютному сопротивлению разрыву при растяжении и прилагал эту силу в центре симметрии сечения. Иначе говоря, он неявно предполагал, что силы сопротивления распределяются равномерно по площади сечения. Применяя далее правило рычага к консольной балке, Галилей нашел, что абсолютное сопротивление разрыву призмы так относится к сопротивлению разрыву посредством рычага, как длина рычага к половине толщины призмы. Если обозначить разрушающую нагрузку при изгибе через Р, абсолютное сопротивление разрыву при растяжении через S, длину консоли — Z и высоту сечения — h, то указанная зависимость может быть записана в виде  [c.162]

Кажущееся временное сопротивление на изгиб, вычисленное по уравнению (12), будет (прочность при разрушении). 1ля чугуна в случае пря1Моугольного сечения = 1,75. То же самое соотношение дают опыты над чугунными балками.  [c.22]


Смотреть страницы где упоминается термин Сопротивление в балках разрушению : [c.126]    [c.60]    [c.265]    [c.73]    [c.135]    [c.220]    [c.220]    [c.705]    [c.204]    [c.106]    [c.51]    [c.726]    [c.250]    [c.300]    [c.205]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.483 , c.484 ]



ПОИСК



Балка — Разрушение

Сопротивление в балках разрушению истинное — Обозначение

Сопротивление в балках разрушению материалов

Сопротивление в балках сложное разрушению материалов

Сопротивление в балках статическому разрушению

Сопротивление разрушению



© 2025 Mash-xxl.info Реклама на сайте