Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление в балках разрушению материалов

С увеличением его высоты Л. Однако имеется предел такого увеличения. Когда сечение становится очень узким, то возникает вопрос об устойчивости балки. Разрушение балки очень узкого прямоугольного сечения может произойти не от преодоления сопротивления материала, а от бокового выпучивания (см. том II).  [c.94]

Наконец, следует отметить, что на хрупкость материала могут очень сильно влиять так называемые остаточные напряжения, которые могут получиться в материале при закалке, при холодной прокатке или при недостаточной температуре горячей прокатки, когда материал получает наклеп. Опытами на растяжение такие напряжения, как правило, не могут быть выявлены. Остаточные напряжения обычно связаны с возникновением объемного напряженного состояния в материале в связи с этим возможно хрупкое разрушение. Такие случаи встречались при изготовлении мощных двутавровых балок со сравнительно тонкими полками. В нашей практике был случай хрупкого разрушения двутавровой балки № 50 при сбрасывании ее на землю в морозный день. Результаты статических испытаний, химического и металлографического анализа показали, что материал как будто вполне доброкачественный. Лишь ударные испытания при различных температурах обнаружили резкую хладноломкость для образцов, вырезанных у края полки двутавра,— в наиболее наклепанном месте. Что касается влияния на хрупкость химического состава сталей, то ударная вязкость понижается, как это видно из таблицы 21, с увеличением количества углерода, т. е. с повышением предела прочности и уменьшением пластических свойств стали. Весьма неблагоприятно отражается на сопротивлении удару, особенно при низких температурах, наличие фосфора. Поэтому на практике при изготовлении материала для деталей, работающих на удар, всячески ограничивают примесь этого элемента.  [c.533]


Расчет балок на чистый изгиб по предельному состоянию. Поставив требование, чтобы наибольшие напряжения не превосходили допускаемых, мы обеспечиваем гарантию того, что эти напряжения не достигнут для балок из хрупких материалов временного сопротивления, а для балок из пластичных материалов — предела текучести. Иными словами, при таком расчете за предельное состояние балок из хрупкого материала принимается состояние по рис. 97, а, а для балок из пластичного материала — по рис. 97, б (при одинаковом Ст для растяжения и сжатия). Представленное на рис. 97, а состояние балки из хрупкого материала можно действительно считать предельным, так как при нем начинается разрушение балки. Что касается состояния, представленного на рис. 97, б, то рассматривать его как предельное можно лишь условно, в том смысле, что в этом состоянии в балке начинают развиваться пластические дефор.мации. Однако это обстоятельство не может ни повлечь за собой значительного увеличения прогибов, ни отразиться на грузоподъемности балки, так как в этом состоянии пластически деформируются лишь крайние волокна балки, все же остальные испытывают упругие деформации. При дальнейшем увеличении изгибающих моментов крайние волокна, правда, деформируются без существенного увеличения напряжений, зато в остальных напряжения могут увеличиваться по крайней мере до От- В результате начинают пластически деформироваться волокна, ближайшие к крайним, затем ближайшие к названным и т. д. Таким образом, пренебрегая возможностью незначительного роста напряжений после достижения величины От, можно представить последовательное изменение напряженного состояния эпюрами, изображенными на рис. 98 пунктиром. Иными словами, пластическая деформация, начавшись у поверхности балки, при дальнейшем росте изгибающих моментов постепенно распространяется вглубь.  [c.174]

Характер движения железобетонных балок связан в первую очередь с интенсивностью нагружения, которая определяет возникновение упомянутых стадий работы материала. Все стадии, кроме первой, требуют учета пластических деформаций, причем во второй и третьей стадиях возможен затухающий колебательный процесс. В случае потери несущей способности можно применять результаты жестко-пластического анализа, принимая за предельный пластический момент соответствующее предельное значение для железобетонных сечений. Аналогичным образом рассмотрена задача о движении хрупко разрушающейся балки, причем зависимость между углом поворота и моментом принята в виде билинейного закона разупрочнения. Поскольку согласно этой диаграмме сопротивление с ростом прогибов падает и в конечном счете становится равным нулю, для каждого вида нагружения можно указать определенную величину прогиба, при превышении которой произойдет разрушение конструкции.  [c.317]


В главе обсуждаются экспериментальные методы оценки меж-слойного разрушения композитов. Кроме классического метода испытания на сдвиг с помощью короткой балки представлен ряд методов, основанных на подходах линейно-упругой механики разрушения методы двойной консольной балки, расслоения кромки при растяжении, изгиба балки с надрезом на конце, растяжения составного образца с одинарной и двойной накладками, растяжения полосы с косоугольным центральным надрезом. Каждый метод обсуждается с позиций сопротивления материалов. Такого рода подход прцемлем ввиду сложной природы композитов. Кроме того, в главе обсуждается взаимосвязь между основными экспериментальными даш1ыми и конструкционными свойствами композитов, в том числе рассматриваются критерий разрушения смешанного типа и параметрический анализ, включающий одномерную модель расслоения при выпучивании для оценки взаимосвязи между характеристиками материала и его конструкционными свойствами. Рассмотрены также соотношения между основными показателями свойств полимерного связующего и поведением материала матрицы in situ в составе композита.  [c.193]

Кроме классических образцов в виде двойной консольной балки в работе [31] для изучения влияния геометрии образца на энергию разрушения была использована усиленная двойная консольная балка. Схема такого образца показана на рис. 4.30. Он представляет собой образец в виде двойной консольной балки, к наружным поверхностям которого после изготовления приклеивают алюминиевые пластины, используя связующее холодного отверждения. Чтобы избежать пластической деформации перед фронтом инициирующей трещины, которая обусловлена наличием полимерного кармана у обреза вкладыша, формирующего эту трещину, перед проведением испытания искусственно вызывают рост инициирующей трещины. На рис. 4.31 и 4.32 представлены результаты, полученные на образцах графито-эпоксидного (As-4/3502) и графито-полиэфирэфиркетонного (АРС-2/РЕЕК) однонаправленных композитов. Отметим наличие поведения типа кривой сопротивления, которое связано с возрастанием при увеличении длины трещины. Исследование поверхности разрушения обнаруживает, однако, наличие большого количества мостиков из волокон, которые и обусловливают рост G, . Данные, обозначенные зачерненными значками на рис. 4.31 и 4.32, получены с помощью эмпирического балочного подхода [уравнение (49)], тогда как обозначенные светлыми значками — методом измерения площади [уравнение (54)]. Хотя длина трещины, при которой G, перестает изменяться, зависит от геометрии образца, условие начала разрушения (величина G, , соответствующая началу роста трещины) не зависит от геометрии образца. Это пороговое значение и представляет, по-видимому, искомую характеристику материала. Как показано в разд. 4.4.7, полученные пороговые значения Gj оказываются равными величинам, измеренным на образцах с тонким адгезионным слоем из чистого связующего.  [c.234]


Смотреть страницы где упоминается термин Сопротивление в балках разрушению материалов : [c.705]    [c.204]    [c.249]    [c.126]    [c.106]    [c.60]    [c.726]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.435 ]



ПОИСК



Балка материалов

Балка — Разрушение

Материалы Сопротивление разрушению

Разрушение материалы

Сопротивление в балках разрушению

Сопротивление в балках сложное разрушению материалов

Сопротивление материало

Сопротивление материалов

Сопротивление разрушению



© 2025 Mash-xxl.info Реклама на сайте