Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ЗАДАЧИ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ РАСТЯЖЕНИЕ, СЖАТИЕ

В сборнике представлены задачи на все основные разделы курса сопротивления материа.тов растяжение — сжатие, сложное напряженное состояние и теории прочности, сдвиг и смятие, кручение, изгиб, сложное сопротивление, кривые стержни, устойчивость элементов конструкций, методы расчета по допускаемым нагрузкам и по предельным состояниям, динамическое и длительное действие нагрузок.  [c.2]


В то же время уделено большое внимание изложению базовых понятий, гипотез сопротивления материалов и анализу условий, в которых можно использовать рассматриваемые методы расчета, а также практическим вопросам, трудно понимаемым студентами. Среди этих вопросов построение эпюр в пространственных и плоских рамах, определение знаков центробежных моментов, раскрытие статической неопределимости рам методом сил, расчеты при внецентренном растяжении — сжатии и косом изгибе, расчеты на прочность при колебаниях. Изложение материала сопровождается решением большого числа задач по всем темам курса, в том числе и задач из контрольных работ заочников.  [c.11]

Прежде чем приступать к решению задач, надо рассмотреть вопрос о рациональных формах поперечных сечений балок, разбив его на две части 1) балки из материалов, различно сопротивляющихся растяжению и сжатию, 2) балки из материалов, различно сопротивляющихся растяжению и сжатию. Установив, что для первых целесообразны сечения, симметричные относительно нейтральной оси, надо решить вопрос, какие из этих сечений более рациональны и что является критерием рациональности. Мы стремимся к тому, чтобы балка имела минимальную массу, т. е. чтобы затрата материала была наименьшей, а прочность наибольшей. Но при данных материале и длине балки ее масса пропорциональна площади ее поперечного сечения, а прочность определяется моментом сопротивления.  [c.131]

За исключением частных случаев (например, продольного соударения тонких стержней), воздействие импульсной нагрузки создает в материале напряженное состояние, характеризующееся высоким уровнем средних напряжений сжатия или растяжения (последнее во взаимодействующих волнах разгрузки). Можно пренебречь сопротивлением материала сдвигу при высоких давлениях и принять систему напряжений эквивалентной гидростатическому сжатию, что допускает решение ряда задач (например, задачи расчета начальной стадии высокоскоростного взаимодействия твердых тел [252—255]) методами гидродинамики. Для таких расчетов достаточно использовать уравнение состояния вида F p, гу, Т)=0, однозначно связывающее среднее напряжение (давление), объемную деформацию ev и температуру Т. Это уравнение пригодно для описания поведен ия жеталлических твгатерй лев, - ъемиая- -деформация-которых является упругой и, следовательно, не зависит от режима нагружения и его истории.  [c.10]

По заданному коэффициенту запаса прочности и предельным напряжениям Опр (стпр.р пр.с) определяем допускаемое напряжение [а] ([а]р, [а]с). Этот пункт может отсутствовать, если непосредственно в условии задачи заданы допускаемые напряжения. В противном случае должны быть либо даны максимальные предельные напряжения, либо указан материал и то напряжение, которое принимается в качестве максимально допускаемого. Таковыми в зависимости от требований к конструкции могут быть или предел пропорциональности Опц, или предел упругости Gy, или предел текучести Gt, или предел прочности временное сопротивление) Gb, или условный предел текучести oq 2- Эти величины берутся из полученных опытным путем так называемых условных диаграмм растяжения-сжатия , которые приведены на рисунках 1.3 и 1.4 для двух различных материалов, соответственно обладающих площадкой текучести -D, и без нее. От-  [c.12]


Курс прикладной механики Бресса состоит из трех томов ). Из них лишь в первом и третьем рассматриваются задачи сопротивления материалов. Автор не делает никаких попыток ввести результаты математической теории упругости в элементарное учение о прочности материалов. Для всех случаев деформирования брусьев предполагается, что их поперечные сечения остаются при деформировании плоскими. В таком предположении исследуются также внецентренные растяжение и сжатие, при этом используется центральный эллипс инерции, как это было разъяснено выше (см. стр. 178). Бресс показывает также, как подходить к задаче, если модуль материала изменяется по площади поперечного сечения. Гипотеза плоских сечений используется им также и в теории кручения, причем Бресс делает попытку оправдать это указанием на то, что в практических применениях поперечные сечения валов бывают либо круглыми, либо правильными многоугольниками, почему депланацией их допустимо пренебрегать. В теории изгиба приводится исследование касательных напряжений по Журавскому. В главах, посвященных кривому брусу и арке, воспроизводится содержание рассмотренной выше книги того же автора.  [c.182]

Было предложено несколько остроумных способов решения этой задачи. Советские физики А.Ф. Иоффе и Я. И. Френкель предложили сперва переохлаждать шар (из каменной соли) до температуры, значительно более низкой, чем температура окружающей атмосферы, а затем нагревать его в воздухе до комнатной температуры ). Более высокая температура на поверхности вызывает расширение в материале шара. Термические напряжения в нем сводятся к сжимающим напряжениям в окружном направлении в его внешних частях, из условия же равновесия следует, что центральная часть шара должна быть растянута. Таким образом, в центре шара создается состояние равномерного всестороннего растяжения. Нетрудно найти термоупругие напряжения в шаре в период процесса теплообмена. Эти напряжения определяются центрально симметричным распределением температуры (задача, рассмотренная в классической теории теплопроводности для сферы). Я. И. Френкель определил максимальные значения термических растягивающих напряжений в центре шара и установил, что в каменной соли, переохлажденной в жидком воздухе, они должны достигнуть высоких значений, которые никогда не наблюдались при испытаниях этого материала на простое растяжение или изгиб (шары из каменной соли при повторном нагреве не дают трещин). Найденные таким путем очень высокие значения сопротивления трехосному растяжению во внутренней точке тела для такого слабого материала, как каменная соль, следует считать сомнительными. Внешние части шара из каменной соли, находящиеся в основном под действиел двухосного сжатия, должны получить пластические деформации, так как этот материал обладает низким пределом текучести. Поскольку высокие значения растягивающих напряжений были вычислены на основании теории упругости, влияние пластической деформации внешних слоев шара, приводящее к уменьшению сжимающих напряжений во внешней оболочке, не было учтено, вследствие чего величина растягивающих напряжений в центральной части оказалась значительно завышенной.  [c.201]

Рассмотрим пример решения новой для теории усталости задачи по данным механическим свойствам материала найти диаграмму предельных напряжений для одноосного и сложного напряженного состояния, в частности для чистого сдвига. Пусть известны механические свойства стали сопротивление разрушению под действием однократно приложенной нагрузки и простом растяжении Яр = 170 кг/мм то же при одноосном сжатии = 195 кг мм и чистом сдвиге Як = 100 кгЫм предел прочности 0 = 150 кг мм предел текучести 0 = 140 кг1мм пределы усталости при симметричном цикле растяжения-сжатия Яру = 80 кг1мм и чистого сдвига Яку = 43 кг мм .  [c.62]


В работе [16] отмечается, что низкий непродолжительный отжиг полностью устраняет возникающий после предварительного растяжения эффект Баушингера, в то время как упрочнение еще сохраняется. Более глубокий отжиг приводит к тому, что уже совпадающие между собой кривые растяжения и сжатия приближаются к исходной кривой деформирования. Вследствие того, что ориентированные дефекты в большей степени неравновесны, чем дефекты дезориентированные, процесс, протекающий при большей температуре и меньшей скорости, должен приводить к меньшему значению эффекта Баушингера по сравнению с процессом, протекающим при меньшей температуре или большей скорости нагружения. Вообще исследования закономерностей процесса упругопластического деформирования материала в условиях неизотермического нагружения необходимо связывать со скоростью протекания процесса деформирования. Диапазон скоростей деформирования, определяемый современными инженерными задачами, простирается от 10 до 10 с . Верхняя граница этого интервала скоростей определяется технологическими задачами взрывной сварки, ковки, штамповки, а нижняя — относится к случаю ползучести и релаксации напряжений. Ясно, что в столь широком диапазоне изменения скоростей деформирования не может быть единой зависимости, связывающей сопротивление деформированию со скоростью. Анализ экспериментальных данных показывает, что следует различать по крайней мере две зоны влияния скорости деформирования — статическую и зону высоких скоростей, динамическую (между этими зонами может лежать зона относительно слабого влияния скорости деформирования на процесс деформирования материала). Причем влияние малых скоростей деформирования на указанный процесс (порядка 10 —10 с ) с физической точки зрения объясняется наличием реологических эффектов (ползучестью), а больших скоростей (порядка 10 —10 с ) — наличием динамических эффектов. Анализируя результаты экспериментальных работ по растяжению образцов при различных скоростях и температурах, можно сформулировать два общих свойства простейшего уравнения состояния материала [17] о = f (е , Т, Р), где Т (Т ти тах)> Р (Рт1п> Ртах) Ртах <7 10 С  [c.133]


Смотреть страницы где упоминается термин ЗАДАЧИ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ РАСТЯЖЕНИЕ, СЖАТИЕ : [c.54]   
Смотреть главы в:

сопротивление материалов  -> ЗАДАЧИ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ РАСТЯЖЕНИЕ, СЖАТИЕ



ПОИСК



Растяжение (сжатие)

Сопротивление материало

Сопротивление материалов

Сопротивление материалов Растяжение и сжатие

Сопротивление материалов, задачи

Сопротивление растяжению



© 2025 Mash-xxl.info Реклама на сайте