Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Непосредственное управление несущим винтом

Непосредственное управление несущим винтом  [c.171]

При рассмотрении принципа работы непосредственного управления несущим винтом было установлено, что при висении вертолета наклон фюзеляжа вызывает такой же наклон плоскости вращения. В такой же мере это относится и к несущему винту с автоматом перекоса. Если не действовать ручкой управления, то тяга винта на висении даже при наклонах вертолета в стороны всегда будет проходить через центр тяжести.  [c.188]


Для того чтобы легче было уяснить принцип управления несущим винтом вертолета, рассмотрим сначала управление упрощенным двухлопастным винтом, шарнирно закрепленным на валу без автомата перекоса (рис. 164). В этом случае имеет место непосредственное управление , т. е. управление наклоном оси несущего винта.  [c.171]

Управление несущим винтом посредством автомата перекоса по своему действию равноценно непосредственному управлению, т. е. наклону вала. В том и другом случае наклон плоскости вращения происходит за счет действия аэродинамических сил.  [c.174]

Важный особый случай представляют задачи аэроупругости для установившихся режимов полета, включающие определение летно-технических характеристик, аэродинамических нагрузок, нагрузок на лопасти и систему управления и вибраций. Поскольку в этом случае р-ешение является периодическим и движения лопастей идентичны, непосредственное вычисление выходных параметров в функции времени неприемлемо. Следовательно, итерационная процедура анализа должна быть изменена для улучшения эффективности вычислений. Основным принципом ее изменения является сведение к минимуму количества и продолжительности связанных с интенсивными вычислениями шагов, требуемых для получения устойчивого решения. В качестве примера рассмотрим задачу определения неравномерного поля индуктивных скоростей. При прямом подходе индуктивный поток определяется на каждом шаге вычислений до тех пор, пока аэродинамические нагрузки и маховое движение лопастей не сходятся к периодическому решению. Однако индуктивный поток не очень чувствителен к небольшим изменениям нагрузки и движения несущего винта. Таким образом, расчет индуктивного потока может быть отделен от расчета периодических аэродинамических нагрузок и махового движения лопастей.  [c.690]

Управляемость вертолета определяется возможностью создавать на нем силы и моменты для достижения двух целей во-первых, для обеспечения равновесия сил и моментов, а следовательно, и возможности удерживать вертолет на желаемом установившемся режиме полета во-вторых, для создания ускорений, а следовательно, и возможности изменять скорость полета и пространственное и угловое положение вертолета. Как и у самолета, управляемость вертолета обеспечивается в основном путем создания моментов по тангажу, крену и рысканию. Имеется также рычаг управления мощностью двигателя. Кроме того, на вертолете предусмотрено непосредственное управление силой тяги, обеспечивающее возможность выполнения вертикального взлета и посадки. Этот дополнительный орган управления расширяет возможности вертолета, однако в то же время и усложняет задачу пилотирования. Некоторое упрощение этой задачи обычно достигается путем установки регулятора частоты вращения несущего винта, автоматически воздействующего на рычаг управления мощностью двигателя.  [c.699]


У летчика имеются следующие рычаги управления ручка циклического шага, для управления продольными и боковыми моментами, рычаг общего шага для управления вертикальной силой, педали для управления моментом рыскания и рычаг управления частотой вращения несущего винта и крутящим моментом. Эти рычаги аналогичны по функциям рычагам, применяемым на самолете, с добавлением рычага общего шага, который используется для непосредственного управления высотой на висении и малых скоростях полета. В поступательном полете рычаг общего шага используется в основном для задания балансировочного значения тяги. Ручка циклического шага находится под правой рукой летчика и перемещается аналогично самолетной ручке управления в продольном и поперечном направлениях. Рычаг общего шага находится под левой рукой летчика и перемещается в основном вертикально.  [c.701]

Таким образом, система управления с обратной связью по моменту на втулке уменьшает прямую реакцию несущего винта на отклонение управления, движения вала и порывы ветра. Парирование влияния порывов ветра и в общем уменьшение устой-чивости по скорости желательны. При полете вперед также уменьшается неустойчивость несущего винта по углу атаки, что существенно улучшает продольную управляемость вертолета. Реакция на непосредственное изменение циклического шага уменьшена, но винтом можно управлять, прикладывая моменты к гироскопу. Обратная связь по моменту на втулке уменьшает демпфирование угловых перемещений несущего винта, но она также уменьшает реакцию на угловую скорость поворота вала, которая связывает продольное и поперечное движения. При наличии демпфирования во вращающейся системе координат гироскоп создает обратную связь по угловым скоростям тангажа и крена, заменяющую демпфирование несущего винта. Характеристики винта с обратной связью по моменту на втулке подобны характеристикам бесшарнирного винта. Обратная связь уменьшает реакцию винта на внешние возмущения и сами силы на несущем винте, обусловленные движением вертолета (а также устойчивость по скорости и неустойчивость по углу атаки), но обеспечивает демпфирование угловых перемещений, заменяющее демпфирование от несущего винта. Если обратная связь по моментам реализуется на бесшарнирном винте, то основным дополнительным соображением является выбор угла опережения управления в контуре обратной связи. Угол должен быть таким, чтобы продольное и поперечное движения вертолета и реакция на отклонение управления не были связанными. При большом коэффициенте усиления, желательном для улучшения характеристик системы, может оказаться недостаточным учет только низкочастотных (т. е. статических) реакций винта и гироскопа. Более того, при высоком коэффициенте усиления  [c.781]

Другим важным фактором, влияющим на работу винта в условиях срыва, является аэроупругая реакция лопастей при больших нагрузках, выражающаяся в характере вибраций вертолета и нагрузок в цепи управления. Движение лопастей в свою очередь приводит к изменению углов атаки, а следовательно, и аэродинамических сил. В частности, большие пикирующие моменты профиля при срыве вызы-вают сильное закручивание лопасти, что непосредственно изменяет углы атаки сечений. Поскольку жесткость цепи управления лопастью обычно невелика, крутильные колебания лопасти в основном состоят из ее поворота как твердого тела за счет упругих деформаций цепи управления. Таким образом, расчет характеристик несущего винта в условиях срыва не может ограничиваться рассмотрением лишь аэродинамических сил, а требует полного анализа, включающего аэроупругие колебания лопастей. При этом углы атаки сечений должны определяться для неоднородного поля скоростей, индуцируемых вихревым следом винта с учетом упругого кручения лопасти. Игнорирование неравномерности скорости протекания и упругого кручения лопасти ведет к большим погрешностям при расчете характеристик винта в условиях срыва.  [c.798]


Рис. 164. Наклон плоскости вращения лопастей при наклоне вала несущего винта с непосредственным управлением Рис. 164. <a href="/info/4992">Наклон плоскости</a> вращения лопастей при наклоне вала <a href="/info/109852">несущего винта</a> с непосредственным управлением
При рассмотрении работы несущего винта с непосредственным управлением было установлено, что вследствие инерции лопастей между быстрым наклоном вала и наклоном плоскости вращения до восстановления соосности между плоскостями их вращения проходит некоторый промежуток времени.  [c.179]

Рассмотрим шарнирный несущий винт, ГШ которого не имеют относа, но содержат пружины, создающие восстанавливающий момент на лопасти (рис. 5.28). Такая пружина может быть использована для повышения эффективности управления несущим винтом, так как при наличии пружины маховое движение не только наклоняет вектор силы тяги, но и непосредственно создает момент на втулке. Поскольку у бесшар-нирного винта лопасти имеют упругие элементы в комлевых частях, анализ работы винта с пружинами в ГШ дает представление и о работе бесшарнирного винта. Предположим, что движение лопасти по-прежнему сводится к ее колебаниям как твердого тела вокруг оси ГШ, так что отклонение сечения от плоскости отсчета определяется координатой z = ф. Если пружина очень жесткая, то по ограниченности движения комлевой части шарнирно-подвешенная лопасть близка к консольно-заделанной, что вызывает значительный изгиб лопасти по форме основного тона изгибных колебаний. Однако жесткость пружин.  [c.216]

У винтокрылого аппарата, называемого автожиром, авторотация является нормальным режимом работы несущего винта. На вертолете мощность передается непосредственно несущему винту, который создает как подъемную, так и пропульсивную силы. На автожире же мощность (крутящий момент) на несущий винт не поступает. Мощность и пропульсивную силу, требуемые для горизонтального полета, обеспечивает пропеллер или другой движитель. Следовательно, автожир по принципу действия похож на самолет, так как несущий винт играет роль крыла, создавая только подъемную силу, но не пропульсивную. Иногда для создания управляющих сил и моментов на автожире, как и на самолете, используют фиксированные аэродинамические поверхности, но лучше, если управление обеспечивает несущий винт. Несущий винт действует в значительной степени как крыло и характеризуется весьма большой величиной отношения подъемной силы к сопротивлению. Правда, аэродинамические характеристики несущего винта не столь хороши, как у крыла, зато он способен обеспечить подъемную силу и управление при гораздо меньших скоростях. Следовательно, автожир может летать со значительно меньшими скоростями, чем самолет. Однако без передачи мощности на несущий винт автожир не способен к насто.хщему висению или вертикальному полету. Так как аэродинамические характеристики автожира ненамного лучше характеристик самолета с малой удельной нагрузкой крыла, использование несущего винта на летательном аппарате обычно оправдано только тогда, когда необходимы вертикальные взлет и посадка аппарата.  [c.25]

Здесь нулевая гармоника 0о — это средний угол установки лопасти, а первые гармоники ряда характеризуют циклическое изменение угла установки с частотой 1. Изменение угла установки лопасти происходит по двум причинам. Во-первых, при работе винта возникают упругие деформации лопасти и элементов цепи управления (динамические степени свободы). Это движение описывают уравнения, которые выводятся из условия равенства нулю суммы моментов, действующих на лопасть относительно ее оси. Во-вторых, угол установки изменяется вследствие действия системы управления. Именно изменением угла установки лопастей летчик управляет вертолетом. Моменты относительно оси лопасти малы, а изменения подъемной силы, вызванные действием управления, значительны, так как происходит непосредственное изменение угла атаки. Поэтому управление углом установки лопастей — весьма эффективный способ управления силами, создаваемыми несущим винтом. Обычно управление охватывает только нулевую и первую гармонику, т. е. задает угол установки 0 = 0о-f 0i os -f 0и sirni без учета деформаций. Среднее значение 0о называют общим шагом винта, а сумму первых гармоник с коэффициентами 0i и 0и — циклическим шагом. Изменение общего шага позволяет управлять в основном средними силами на лопастях, а значит, величиной силы тяги винта, изменение же циклического шага дает возможность управлять ориентацией плоскости концов лопастей (т. е. первыми гармониками махового движения), а значит, наклоном вектора силы тяги. Угол 0i определяет поперечный наклон вектора силы тяги, угол 01S — продольный.  [c.163]

Приведенный здесь анализ динамики полета вертолета основан на использовании низкочастотной модели несущего винта. При такой аппроксимации получается система с шестью степенями свободы твердого тела, причем влияние несущего винта проявляется в форме производных устойчивости. Для анализа, а часто и для численных решений удобнее система более низкого порядка. Низкочастотная модель несущего винта в целом достаточно хороша для анализа динамики полета. Она согласуется с очень низкими частотами движения вертолета как твердого тела, что было показано численными примерами для корней, приведенными в предыдущих разделах. Оправданием для использования низкочастотной модели служит быстрая перестройка махового движения лопастей (см. разд. 12.1.3). Небольшое запаздывание объясняется мощным демпфированием махового движения лопасти. В разд. 12.1 низкочастотная модель была получена непосредственно из дифференциальных уравнений махового движения. В невращающейся системе координат были опущены все производные по времени от угла взмаха, так что уравнения свелись к квазистатической реакции махового движения на отклонения управления, перемещения вала и порывы ветра.  [c.774]


Автоматическое регулирование частоть вращения несущего винта при измeнeни его общего шага, угла атаки и скорости полета вертолета осуществляется обычно путем автоматического изменения подачи топлива в двигатели. Автономная система регулирования силовой установки может быть расположена непосредственно на двигателе. Она обеспечивает как изменение его мощности вручную в диапазоне от малого газа до взлетного режима, так и автоматическое поддержание заданной частоты вращения несущего винта. Данная система регулирования двигателей может работать и без системы шаг — газ , т. е. рычаг общего шага может изменять только величину шага без изменения положения рычага подачи топлива, который должен быть переведен в положение Автомат . На вертолетах, имеющих более одного двигателя, устанавливаются рычаги раздельного управления мощностью двигателей, расположенные на одном кронштейне с рычагом общего шага. Этими рычагами пользуются в основном при раздельном опробовании двигателей на земле и в аварийных случаях в полете при необходимости повторного запуска отказавшего двигателя.  [c.172]

Автомат перекоса типа пг ук (рис. 10.11) имеет шарово шарнир 4, расположенны внутри ползуна 9, находящей ся в редукторе несущего ви та. Внутри ползуна имеете рычаг 5, отклоняющийся отн( сительно шарового шарнира любом направлении. На вер нем конце этого рычага на пo шипниках вращается стакан с прикрепленными к нему изо нутыми рычагами 1. Конц изогнутых стержней соед няются с рычагами поворо лопастей, которые крепятся к лопасти шарнирно, благодаря ч( му имеют некоторую свободу в плоскости вращения несущег винта. При движении в стороны конца рычага относительно ш рового шарнира отклоняется плоскость вращения изогнуты стержней, что вызывает соответствующее циклическое измен( ние шага несущего винта, и осуществляется продольно-попере ное управление вертолета. Перемещение ползуна вверх — вни изменяет общий шаг несущего винта. Автомат перекоса тип паук применяется весьма ограниченно только на тех вертт летах, у которых втулка несущего винта непосредственно пр1 мыкает к редуктору винта.  [c.180]

Глубина проработки средств продольно-поперечного управления непосредственно зависела от уровня представлений о динамике полета вертолета. Винтокрылый аппарат считался идеально устойчивым средством воздушной навигации. Органов создания продольного и поперечного управляющих моментов, как правило, не предусматривалось. Впервые они встречаются в 1891 г. в проекте С.А. Гроховского, что, по-видимому, связано с переосмыслением опыта воздухоплавания и анализом результатов опытов с моделями. В 1901 г. вышла брошюра Д. Чумакова — первая работа в области динамики полета винтокрылых летательных аппаратов. Проведенные затем во вновь созданных аэродинамических лабораториях экспериментальные исследования несущих винтов позволили выявить силы и моменты, действующие на винте, и подтвердили целесообразность установки органов продольнопоперечного управления. Появились различные предложения повышения устойчивости вертолетов, в том числе и прообразов современных автопилотов.  [c.205]


Смотреть страницы где упоминается термин Непосредственное управление несущим винтом : [c.779]    [c.176]    [c.29]    [c.30]    [c.783]    [c.48]    [c.18]    [c.179]   
Смотреть главы в:

Элементарная теория вертолета  -> Непосредственное управление несущим винтом



ПОИСК



Вал несущего винта

Ток несущий

Управление несущим винтом



© 2025 Mash-xxl.info Реклама на сайте