Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Низкочастотная модель несущего винта

Рассмотрим теперь связанное продольно-поперечное движение одновинтового вертолета на режиме висения. Продольное и поперечное движения существенно связаны через силы на несущем винте. Испол[ зуя низкочастотную модель несущего винта (разд. 15.3.1), можно получить следующие выражения для реакций винта через производные устойчивости  [c.737]

Так же как и для режима висения, в рассматриваемом случае силы и моменты несущего винта, действующие на вертолет, находятся из низкочастотной модели несущего винта, и, следовательно, несущий винт не добавляет системе степеней свободы. Обычно низкочастотная модель хорошо представляет несущий винт при анализе динамики полета, но в некоторых случаях оиа неудовлетворительна. В разд. 12.1 были получены квазистатические силы и моменты на несущем винте с учетом влияния махового движения. При полете вперед в выражениях для производных устойчивости несущего винта, полученных для режима висения, появляются члены, имеющие величину порядка так что эти производные до = 0,5 меняются не очень сильно. Появляются также производные величиной порядка связывающие вертикальное и продольно-поперечное движения  [c.749]


С использованием низкочастотной модели несущего винта реакцию вертолета можно выразить через производные устойчивости  [c.753]

G использованием низкочастотной модели несущего винта можно получить следующие выражения для производных устойчивости  [c.767]

НИЗКОЧАСТОТНАЯ МОДЕЛЬ НЕСУЩЕГО ВИНТА  [c.774]

Динамика несущего винта может быть описана его низкочастотной моделью (разд. 15.3.1), которая дает следующие производные устойчивости  [c.717]

В работе [М. 121] проведено сравнение корней продольного движения вертолета, найденных с учетом динамики несущего винта и с использованием низкочастотной модели. Для вертолета на режиме висения учитывались четыре степени свободы продольная скорость хв, угол тангажа 0в, продольный Pi и поперечный Pis наклоны конуса лопастей. Квазистатическая аппроксимация позволила снизить порядок модели до двух степеней свободы, Хв и 0в- В результате сравнения корней продольного движения вертолета с учетом и без учета степеней свободы несущего винта для шарнирного и бесшарнирного винтов, а также сравнения частотных характеристик до частоты (o = 0,14Q был сделан вывод о том, что квазистатическая аппроксимация хорошо описывает несущий винт при анализе динамики полета.  [c.775]

При учете моментов, прикладываемых летчиком для управления несущим винтом, полный закон управления для системы (с применением низкочастотной модели гироскопа) имеет вид  [c.780]

Характеристические уравнения, описывающие динамику вертикального движения вертолета, не имеют нулей и имеют один полюс, равный s = Zw — —0,01,. .. —0,02. Эта безразмерная величина крайне мала, что подтверждает допустимость использования низкочастотной модели несущего винта. Безразмерная чувствительность управления равна ig/Go = — ZeJZa, = — (4/3) размерная — Zb/Oo = —(4/3) Q/ . Чувствительность управления определяется равновесием аэродинамических сил на винте и не зависит от массовой характеристики лопасти или индуктивных потерь тяги. Однако деформация индуктивного потока из-за вертикальной скорости уменьшает вертикальное демпфирование и повышает эффективность управления общим шагом вертолета примерно наполовину относительно режима висения, поскольку большие массы воздуха, протекающие сквозь диск винта при наборе высоты, уменьшают индуктивную скорость (см. разд. 10.6.4). Напомним также, что в разд. 3.3 было получено выражение А0О = (3/4)Хс Для изменения общего шага, необходимого для обеспечения малой установившейся вертикальной скорости подъема, с учетом малой индуктивной скорости. Этот результат соответствует чувствительности управления, равной 2д/0о = — (4/3), как указано выше. Короткопериодическая реакция описывается выражением  [c.713]


Приведенный здесь анализ динамики полета вертолета основан на использовании низкочастотной модели несущего винта. При такой аппроксимации получается система с шестью степенями свободы твердого тела, причем влияние несущего винта проявляется в форме производных устойчивости. Для анализа, а часто и для численных решений удобнее система более низкого порядка. Низкочастотная модель несущего винта в целом достаточно хороша для анализа динамики полета. Она согласуется с очень низкими частотами движения вертолета как твердого тела, что было показано численными примерами для корней, приведенными в предыдущих разделах. Оправданием для использования низкочастотной модели служит быстрая перестройка махового движения лопастей (см. разд. 12.1.3). Небольшое запаздывание объясняется мощным демпфированием махового движения лопасти. В разд. 12.1 низкочастотная модель была получена непосредственно из дифференциальных уравнений махового движения. В невращающейся системе координат были опущены все производные по времени от угла взмаха, так что уравнения свелись к квазистатической реакции махового движения на отклонения управления, перемещения вала и порывы ветра.  [c.774]

Полагая движения вертолета медленными, будем считать достаточно приемлемой низкочастотную или квазистатическую модель несущего винта. Эта модель, включающая влияние махового движения лопастей, была получена в разд. 12.1, где приведены выражения для сил на втулке вследствие движений вала винта, отклонений управления и воздействия аэродинамических возмущений. Низкочастотная модель основана на решении уравнений установивщегося движения (алгебраических, не дифференциальных) и не вносит в систему дополнительных степеней свободы.  [c.709]

Резюмируя, можно отметить, что динамика продольного движения вертолета характеризуется тремя корнями действительным отрицательным (устойчивое апериодическое движение), который обусловлен в основном демпфированием по тангажу, создаваемым несущим винтом, и двумя комплексными корнями в правой полуплоскости (медленно нарастающие колебания), обусловленными связью отклонения по углу тангажа с поступательным движением посредством производной устойчивости по скорости Ми. Для шарнирногв несущего винта типичное значение действительного корня соответствует времени двойного уменьшения амплитуды ti/2 = 1 -г- 2 с. Комплексным корням соответствует длиннопериодическое движение с частотой 0,05ч-0,1 Гц (период Г =10- 20 с) и временем удвоения амплитуды /г = 3 -f- 4 с. Модули всех трех корней малы по сравнению с частотой оборотов несущего винта, что подтверждает справедливость использования низкочастотной модели. По величине действительный корень близок к корню вертикального движения. Неустойчивость не является большим недостатком, поскольку период и время удвоения амплитуды достаточно велики, что дает летчику возможность управлять этим движением. Однако характеристики управляемости вертолета таковы, что для эффективной стабилизации продольного движения летчик должен реализовать достаточно сложный алгоритм управления.  [c.722]

Часто необходимо учитывать помимо первого тона махового движения другие степени свободы несущего винта, но и в этом случае может быть использована низкочастотная модель. Низкочастотную реакцию можно определить путем вывода полных дифференциальных уравнений движения в невращающейся системе координат для учитываемых степеней свободы несущего винта. При квазистатической аппроксимации члены, содержащие ускорения и скорости, отбрасываются (если рассматривать движение относительно вала несущего винта). Установившаяся (периодическая) реакция несущего винта с учетом требуемых степеней свободы может быть получена также на основе анализа типа описанного в разд. 5.25, когда отклонение управления и движение вала винта рассматриваются происходящими одновременно для получения установившихся реакций на втулке, по которым определяются производные устойчивости несущего винта.  [c.775]



Смотреть страницы где упоминается термин Низкочастотная модель несущего винта : [c.706]    [c.562]    [c.563]    [c.741]    [c.746]    [c.758]    [c.779]   
Смотреть главы в:

Теория вертолета  -> Низкочастотная модель несущего винта



ПОИСК



Вал несущего винта

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте