Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка результатов спектральных измерений

Обработка результатов спектральных измерений  [c.194]

К настоящему времени выполнены многочисленные исследования (см., например, [И, 12, 24, 25, 41, 47—50]), касающиеся обработки спутниковых данных и оценки точности дистанционного зондирования атмосферы в зависимости от выбранной схемы спектральных измерений и от уровня их ошибок, метода решения обратной задачи, адекватности априорной информации, состояния атмосферы (наличия и характера облачности) и т. п. Однако до сих пор нельзя еще сделать однозначных выводов о наиболее перспективном пути решения обратных задач с точки зрения создания оптимальной оперативной системы обработки спутниковых спектральных измерений. Правда, в ряде исследований [24, 30, 46, 47] на основании сравнения результатов решения обратных задач, проведенного с помощью различных методик интерпретации спутниковых данных, показано, что метод статистической регуляризации дает наилучшие результаты, однако его точность в определенной степени зависит от используемого статистического материала.  [c.213]


В оснащении платформы предусмотрена 100-канальная информационно-измерительная система с обработкой результатов на ЭЦВМ. В программное обеспечение входит коррекция движений по результатам измерения движения объекта, а также возможность возбуждения случайных процессов по спектральным характеристикам.  [c.332]

При статистическом характере возбуждения спектр колебаний из дискретного становится непрерывным. Поэтому существенное значение приобретает статистическая обработка результатов экспериментальных исследований и моделирования, выделение частотных зон, где спектральная плотность максимальна, и описание статистических свойств основных спектральных составляющих. Такой сравнительный анализ вибрационных процессов, полученных экспериментально и математическим моделированием, позволяет поставить задачу диагностики как специальный случай задачи идентификации [16]. Основное отличие от рассмотренной в [16] схемы в нашем случае состоит в том, что математическая модель объекта в первом приближении известна и идентифицируется возбуждение на входе объекта, недоступное непосредственному измерению. Критерием идентификации может служить совпадение статистических характеристик выходов реального объекта и его математической модели (1). Такое совпадение (или достаточно хорошее приближение) служит основанием для вывода об адекватности статистических характеристик возбуждения на входах объекта и его математической модели. Естественно, что информативность различных характеристик вибро-акустического процесса для идентификации возбуждения является различной. Поэтому существенное значение приобретает изучение возможно большего числа таких характеристик с целью выбора наиболее информативных. Здесь остановимся только на некоторых таких характеристиках (их опреде-  [c.48]

Для обработки результатов измерений сигналы с магнитной ленты поступают в анализатор спектральной плотности результаты представляются в виде перфоленты (рис. 20, а и б). Установка полностью автоматизирована. Для расчетов частотной характеристики системы необходим корректировочный расчет, который производится на ЭВМ по специальной программе с использованием перфоленты, полученной в анализаторе.  [c.24]

При исследовании электроискрового шлифования поверхности уплотняющего конуса корпуса распылителя форсунки измеряли биение С, угол F, линейный размер А. Информация о ходе процесса электроискровой обработки была получена путем измерений 400 деталей, которые были обработаны на восьми позициях станка технологическая информация была представлена соответственно восемью реализациями процесса, каждая из которых содержала от 40 до 60 измерений. В результате статистической обработки опытных данных были получены значения, по которым построены графики нормированных автокорреляционных функций [51]. Их анализ показывает, что процесс по всем регистрируемым признакам качества можно считать дельта-коррелированным (значения автокорреляционных функций близки нулю), что не опровергает допущение о стационарности исследуемого случайного процесса [57]. Случайная последовательность xi( ), характеризующая отклонения расстояний расчетного сечения конуса А от принятой базы, представлена на рис. 32 там же приведены соответствующая нормированная автокорреляционная функция и спектральная плотность. Положение центров группирования непостоянно из-за смещения уровня настройки к нижней границе допуска.  [c.107]


Перо можно либо фотографическим, либо фотоэлектрическим методом. Обработка полученной интерферограммы заключается в измерении на негативах диаметров изображений интерференционных колец с помощью измерительного микроскопа. Для построения контура линии измеряют распределение плотности почернения в направлении диаметра на специальных приборах — микрофотометрах. В результате получают кривые распределения интенсивности в интерференционной картине, подобные контуру спектральной линии источника.  [c.39]

В одном случае (2-я гармоника ТНД, точка измерения № 4 вблизи свободной турбины) обнаружена интересная аномалия (см. рис. 5), когда вибрация заводских двигателей превосходит вибрацию эксплуатируемых двигателей. По нашему мнению, это явление связано с эффектом приработки подшипниковых опор в течение нескольких десятков часов после начала эксплуатации. По результатам статистической обработки были сделаны первые проработки спектральных норм вибрации раздельно для новых двигателей и двигателей в эксплуата-  [c.57]

Разрешить две спектральные линии равной яркости — значит найти расстояние между ними (ДХ). В результате влияния случайных ошибок измерения сигнала на выходе спектрального при- бора расстояние между линиями будет найдено с некоторой погрешностью. Как показал Л. А. Халфин [9], относительная ошибка определения растет приблизительно обратно пропорционально расстоянию между линиями. Естественно, что при такой сильной зависимости даже привлечение математических методов обработки результатов измерений не позволяет существенно продвинуться за предел разрешения, найденный Рэлеем.  [c.11]

В книге описаны отдельные теоретические и экспериментальные особенности анализа параметров нестационарного звукового процесса и вытекающие из теоретических положений практические рекомендации, которые могут быть использованы при подготовке средств измерений для экспериментальных исследований нестационарного шума и обработки результатов. Рассматриваются вопросы измертний спектральных и корреляционных характеристик нестационарного акустического нзлуче- ния и порождакицих о-о источников.  [c.2]

Комплексные исследования оптических и микрофизических ха-рактерстик дымок прибрежных районов проведены в Институте оптики атмосферы СО АН СССР. Статистическая обработка результатов измерений спектральных зависимостей коэффициентов ослабления в дымках прибрежного района показывает, что для оценки к(Х) в области длин волн Я = 0,4- -12 мкм можно воспользоваться существованием корреляционной связи между к Х) в видимой и инфракрасной области спектра. На рис. 4.12  [c.137]

Болт из стали 40ХНМА разрушился спустя некоторое время после затягивания его тарированным ключом Мз=1200 Н. м. Разрушение прошло по галтели под головкой болта (рис. 45). Траектория развития трещины совпадает с рисками от механической обработки, параллельно поверхности излома наблюдаются трещины. В галтели риски от механической обработки были более грубые, чем на остальной поверхности болта. На торце головки болта наблюдалась зона смятия, центр которой находится возле очага разрушения. Очаг разрушения единичный. На противоположной стороне — развитая зона долома. Внешний вид излома и зона смятия на торце головки указывают на то, что затягивание болта при монтаже производилось с перекосом. Спектральным анализом установлено, что защитное покрытие болта цинковое вместо кадмиевого по чертежу. Измерения микротвердости на косых шлифах по телу болта, на боковой поверхности фланца головки и по торцу головки показали достаточно однородные результаты (4.05—3,70 4,60—4,30 4,05 — 3,70 ГН/м ), что свидетельствует об отсутствии на поверхности  [c.68]

В работе [1] проведен анализ и показана возможность определения динамических характеристик упругой системы станков с прерывистым процессом резания без искусственного возбуждения системы. Амплитудно-фазовая частотная характеристика (АФЧХ) упругой системы определяется с помощью ЭЦВМ по результатам измерения и спектрального анализа относительных колебаний между инструментом и заготовкой и сил резания непосредственно в процессе обработки.  [c.61]


Спектрометры являются удобным инструментом для промышленных измерений вибрации механизмов, систем, установок, так как представляют результат в виде определенного набора цифр. Такой результат легко обрабатывать, например сравнивать с эталонным, усреднять с другими измерениями, вводить поправки для приведения к абсолютным уровням и т. д. Эту вторичную обработку данных при большом объеме измерений можно провести на. ЭВМ [19, 13]. Однако для выявления более тонкой спектральной структуры процесса, нeoбxoди юй для ряда исследований вибраций, требуются узкополосные анализаторы спектра. Рассмотрим их функциональные схемы.  [c.272]

Характерные осциллограммы динамических напряжений в шахте в режиме, близком к номинальному, нри работе шести циркуляционных петель представлены на рис. 6. Осциллограмма 1 зарегистрирована кольцевым тензорезистором, осциллограмма 2 — продольным. На рис. 7 приведены результаты статистической обработки осциллограмм. Построены графики корреляционной функции К (т) и спектральной плотности S (/). Можно сопоставить график спектральной плотности с результатом расчета собственных частот колебаний шахты реактора, приведенным на рис. 2. Основные формы колебаний шахты (т = 1, п = 2, 3, 4) имеют частоту около 5 гц. Этому соответствует основной максимум спектральной плотности напряжений, зафиксированных продольным и кольцевым тензоре-зисторами. Из рис. 2 видно, что форма колебаний шахты, имеющая шесть волн в окружном направлении, соответствует частоте 20 гц. При шести работающих циркуляционных петлях эта форма проявляется в показаниях кольцевого тензорезистора. Это видно на графике спектральной плотности. Как и следовало ожидать, продольный тензорезистор не отметил этой частоты. Кольцевые напряжения в шахте и экране реактора, как правило, больше продольных. Этот факт говорит о том, что основной вклад в динамические напряжения в шахте и экране вносят оболоченные формы колебаний. Кривая 5 на рис. 7 соответствует спектральной плотности напряжений, зарегистрированных тем же кольцевым тензорезистором при работе пяти циркуляционных петель. В этом режиме форма, соответствующая и = 6, уже не является легко возбудимой. Это видно и из графика спектральной плотности, где отсутствует всплеск на частоте 20 гц. Приведенные данные еще раз подтверждают возможность анализа спектра собственных частот внутрикорпусных устройств с использованием изложенной выше методики. Для сравнения отклика обработана характерная осциллограмма показаний кольцевого тензорезистора на шахте, полученная при измерениях на реакторе другой конструкции. На рнс. 8 приведены результаты статистической обработки полученных осциллограмм, показывающие, что в этом случае преобладающей является частота 25 гц.  [c.158]

Дальнейшее совершенствование банков данных по параметрам спектральных линий (ПСЛ) предпринято в [99] на основе использования современных достижений теории колебательно-вращательных спектров [18], позволяющих более строго учесть влияние внутримолекулярных (спин-вращательного, спин-колебательного, колебательно-вращательного) взаимодействий на ПСЛ. Источниками разработки алгоритмов послужили методики расчета ПСЛ, созданные в Институте оптики атмосферы СО АН СССР [19, 20]. В банке данных содержится информация о ПСЛ для следующих типов молекул двухатомных гетероядерных с нулевым и полуцелым спином гомоядерных с отличным от нуля целым спином трехатомных линейных симметрии Сооу, Оооп] трехатомных асимметричных, в том числе с полуцелым спином и четырехатомных симметрии Сзу. В банк данных заносится как информация о ПСЛ, полученная расчетными методами, так и являющаяся результатом обработки измерений, выполненных на спектрометрах высокого разрешения.  [c.203]

Основное внимание в монографии уделяется явлению рассеяния оптического излучения и решению соответствующих обратных задач применительно к дистанционному оптическому зондированию атмосферы. В ней обобщаются результаты исследований, по--лученные авторами и их сотрудниками в последние годы по методам интерпретации оптических измерений. Именно явление светорассеяния в первую очередь определяет то, что принято понимать под оптикой атмосферы [27]. С другой стороны, оно лежит в основе дистанционных методов исследования полей физических и оптических параметров атмосферы. В монографии значительное место отводится построению эффективных алгоритмов оперативной обработки и интерпретации оптической информации, которая может быть получена с использованием таких измерительных систем, как спектральные радиометры, многочастотные лидары, по-.ляризационные нефелометры, спектральные фoтoмeтpJ5I, установленные на космических платформах и т. п., а также измерительных комплексов, которые могут быть составлены из указанных оптических систем. Это, по мнению авторов, должно способствовать олее широкому использованию методов решения обратных задач светорассеяния в практике атмосферно-оптических исследований. Что же касается математических аспектов теории интерпретации косвенных измерений, которые необходимо сопутствуют любому исследованию по обратным задачам, то их изложение в основном дается в краткой форме и по возможности элементарно. Во многих случаях, где это оказывалось возможным, изложение основного материала сопровождалось численными примерами. В тех разделах, где речь идет о некорректных задачах, широко используется известная аналогия между линейным интегральным уравнением и линейной алгебраической системой. Поэтому для большей ясности в понимании и прочтении формульного материала интегральные операторы во многих местах можно заменять соответствующими матричными аналогами. В целом содержание монографии достаточно замкнуто и не требует, по мнению авторов, излишне частого обращения к дополнительной литературе. Вместе с тем авторы не гарантируют легкого чтения всех без исключения разделов монографии. В ряде мест естественно требуется определенная проработка и осмысление материала, особенно для той категории читателей, которая впервые знакомится с обратными задачами оптики атмосферы или собирается практически исполь- зовать ту или иную вычислительную схему интерпретации в своей работе.  [c.7]



Смотреть страницы где упоминается термин Обработка результатов спектральных измерений : [c.271]    [c.611]    [c.154]    [c.237]    [c.416]    [c.180]    [c.7]   
Смотреть главы в:

Молекулярное рассеяние света  -> Обработка результатов спектральных измерений



ПОИСК



Обработка измерений

Обработка результатов

Обработка результатов измерений

Результат измерения



© 2025 Mash-xxl.info Реклама на сайте