Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общее исследование гидродинамической характеристики

Учебное пособие предназначено для изучения курса конструирования и расчета гидротурбин на прочность, который обычно следует после изучения общенаучных и общетехнических дисциплин и первых специальных курсов. Изучение рассматриваемого курса предполагает знание основ теории рабочего процесса, методов гидродинамических исследований и характеристик гидротурбин, а также наличие общих представлений о конструкциях. Курс базируется на учебных пособиях 139 ] и [49 ]. Целью данной работы явилось изложение в достаточном объеме сведений, необходимых при конструировании гидротурбин, проектировании и расчетах на прочность их узлов и деталей.  [c.3]


Заключение. Раньше чем дать решение какой-нибудь частной проблемы движения жидкостей в пористой среде, следует разработать общую формулировку гидродинамики рассматриваемого течения. Любое такое исследование можно представить себе как формулировку в новой редакции хорошо известных основных определений и закономерностей механики, выраженных гидродинамическими значениями так, чтобы их можно было приложить к течению жидкостей. Это требует раньше всего, чтобы течение полностью подчинялось закону сохранения материи. Поэтому оно должно удовлетворять уравнению неразрывности [(1), гл. III, п. 1], которое является аналитическим утверждением закона сохранения материи. После этого необходимо определить термодинамическую природу интересующей нас жидкости и режим течения. Природа жидкости в общем виде может быть представлена зависимостью между давлением, плотностью и температурой его [уравнение (3), гл. Ill, п. 1], которое является уравнением состояния жидкости. Постоянство плотности в уравнении состояния характеризует собой несжимаемую жидкость. Так, закон Бойля может быть принят в. качестве уравнения состояния для течения идеального газа. Термодинамический режим течения может быть охарактеризован аналогичным путем зависимостью между давлением, плотностью и температурой. Так, температура потока постоянна при изотермическом режиме и изменяется от известного показателя степени плотности для адиабатического режима. Наконец, необходимо установить динамические связи жидкости с градиентом давления и внешними силами. В основном это дается гидродинамическим подтверждением первого закона движения Ньютона. Из всех характеристик течения, требуемых формулировками, эта характеристика является наиболее специфичней. В то время как все жидкости должны удовлетворять уравнению неразрывности, и большие группы их могут контролироваться единичным уравнением состояния, одна и та же жидкость может иметь различные динамические характеристики в зависимости от условий, при которых происходит движение, и среды, в которой поток движется.  [c.125]

Изуч ение теплообмена в двухфазных потоках представляет собой весьма трудную задачу ввиду сложности гидродинамической структуры потока, взаимного, порой определяющего влияния теплообмена и гидродинамики, Случайных отклонений от гидродинамической и термодинамической неравновесности. Режимы течения определяются рядом факторов давлением, общим расходом потока и соотношением между фазами, свойствами фаз, тепловым потоком, предысторией потока и др. По имеющейся классификации основными режимами течения являются пузырьковый, снарядный, расслоенный, эмульсионный дисперсно-кольцевой и обращенный дисперсно-кольцевой (пленочное кипение недогретой жидкости). Четких границ между ними не наблюдается, и существуют целые области переходных режимов. Пока не имеется детальной информации для всех режимов течения по таким основным характеристикам потока, как распределение фаз, скоростей и касательных напряжений. Поэтому основой для понимания явления служат визуальные наблюдения и некоторые экспериментальные данные по распределению фаз, их полям скоростей, уносу и осаждению, гидравлическому сопротивлению и т. д. К настоящему времени накоплена достаточная информация о режимах течения адиабатных потоков, однако мало данных по диабатным (с подводом тепла) потокам при высоких давлениях, тепловых нагрузках и большом различии теплофизических свойств. Подавляющее большинство исследований выполнено на пароводяных и воздуховодяных смесях.  [c.120]


Математическое моделирование, закон поверхностного разрушения твердых тел при трении в общем случае должны учитывать физические, химические, механические явления, контактную ситуацию, изменение геометрических характеристик твердых тел во времени, кинематику движения, структуру и состав поверхностных и приповерхностных слоев, образование химических поверхностных соединений, состояние смазочного слоя. Получение уравнений, характеризующих в общем случае процесс поверхностного разрушения при трении, должно базироваться на синтезе эксперимента и математических моделей, учитывающих физико-химические процессы, механику сплошных сред, термодинамику и материаловедческий аспект проблемы. Разрабатываемый теоретико-инвариантный метод расчета поверхностного разрушения твердых тел при трении основывается на уравнениях эластогидродинамической и гидродинамической теории смазки, химической кинетики, контактной задачи теории упругости, кинетической теории прочности и учитывает теплофизику трения, адсорбционные и диффузионные процессы. Цель данных исследований —в получении из анализа и обобщений экспериментальных результатов критериальных уравнений с широкой физической информативностью структурных компонентов, полезных для решения широкого класса практических задач и необходимых для ориентации в направлении постановки последующих экспериментальных работ. Исследования в данной области будут углубляться и расширяться по мере развития знаний о физико-химических процессах, г[ротекающих при трении, получения количественных характеристик и развития математических методов, которые обобщают опытные наблюдения.  [c.201]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]

Идея о том, что теоретико-вероятностные моменты гидродинамических полей (1.1) должны быть признаны основными характеристиками турбулентного движения, т. е. фактически формулировка проблемы турбулент-вости в терминах моментов, была высказана впервые советскими учеными А. А. Фридманом и Л. В. Келлером. В их совместном докладе на Первом междунардном конгрессе по прикладной механике в Делфте (Л. В. Келлер и А. А. Фридман, 1924 см. также более подробное изложение в статье Л. В. Келлера, 1925) была предложена обширная программа объединения статистических и динамических методов исследования турбулентных течений, опирающегося на рассмотрение динамических эволюцяошных) уравнений для моментов (1.1). Эти динамические уравнения получаются, если составить производную по времени от момента (1.1) и подставить в нее выражения для производных по времени от отдельных гидродинамических величин, вытекающие из уравнений гидромеханики. Фридман и Келлер ограничились лишь уравнениями для вторых двухточечных моментов В и (Mi, М2), но при этом они рассмотрели сразу общий случай сжимаемой жидкости. В частном же случае вязкой несжимаемой жидкости динамические уравнения для и-точечного момента п-го порядка поля скорости ( 1 -7 М ) = Б . . . (Xi, 1,. . Хп, i ) (где теперь уже индексы /й пробегают лишь три значения 1,2 и 3, отвечающих трем компонентам скорости) при различных точках х , Хп ш различных моментах времени 1,. . ., имеют вид  [c.464]


Общим ограничением промыслово-геологических и гидродинамических методов исследования, а также методов ГИС является вьшолнение наблюдений только в скважинах. Поэтому межскважинные (площадные) изменения наблюдаемых параметров прогнозируются путем интерполяции и экстраполяции скважинных данных. В связи с этим, сейсмические наблюдения обладают тем преимуществом, что позволяют получить информацию на площади с необходимой детальностью (например, по сетке с шагом 25x25 м и менее), а проведение их в режиме мониторинга позволяет оценить пространственно-временное изменение волновых параметров, коррелируемых с характеристиками коллектора, типом флюидонасыщения и т.п. Однако недостаточная оперативность сейсмических исследований МОГТ в модификации 4В на разрабатываемых месторождениях значительно сужает круг решаемых задач и обычно ограничивается оценкой площадного изменения ВНК, ГВК и ГНК за 2-3-летний и больший период разработки [1, 2]. С целью расширения круга решаемых задач применяют оперативные методы активной и пассивной сейсморазведки в модификациях скважинных и наземных наблюдений (типа ВСП, СЛБО, АНЧАР и др.).  [c.91]


Смотреть страницы где упоминается термин Общее исследование гидродинамической характеристики : [c.390]   
Смотреть главы в:

Гидродинамика прямоточного котла  -> Общее исследование гидродинамической характеристики



ПОИСК



Да гидродинамическое

Общая характеристика



© 2025 Mash-xxl.info Реклама на сайте