Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные понятия устойчивости динамических систем

Эта глава, которая является вводной, содержит изложение основных понятий и положений, необходимых для изучения нелинейных колебаний. Прежде всего следует сказать несколько слов о колебательных явлениях вообще и о нелинейных колебаниях в частности. Общие закономерности, которыми обладают колебательные процессы в системах различной физической природы, составляют предмет науки, получившей название теории колебаний. Под колебательным явлением принято понимать либо то, что связано с фактом установившегося движения в рассматриваемой системе, либо то, что связано с процессом перехода от одного установившегося движения к другому. Установившееся движение характеризуется повторяемостью и определенной устойчивостью (смысл последнего понятия будет уточнен ниже). Переходные процессы характеризуются тем установившимся движением, к которому они приближаются. Множество переходных процессов данного установившегося движения образует его область притяжения. Смена установившихся движений, которая происходит в результате изменения какого-нибудь физического параметра рассматривае.мой системы при его переходе через некоторое значение, называется бифуркацией. Если при этом смена установившихся движений происходит достаточно быстро, т. е. скачкообразно, то говорят о жестком возникновении нового режима. В противном случае возникновение нового режима называют мягким . Колебательные явления, возникающие в так называемых нелинейных системах, называются нелинейными колебаниями. Однако, прежде чем определить, что такое нелинейная система, рассмотрим более общий класс систем, называемых динамическими системами.  [c.7]


Устойчивость систем автоматического регулирования является одной из основных динамических характеристик этих систем. Понятием устойчивости определяется свойство системы возвращаться к установившемуся состоянию после прекраш,ения действия воз-муш,ения, которое вывело ее из первоначального состояния [7]. Устойчивость линейных (или подлежащих линеаризации) систем автоматического регулирования характеризуется тем, что любое ограниченное по абсолютной величине воздействие вызывает также ограниченное изменение величин, характеризующих состояние системы. Теорией автоматического регулирования доказано, что необходимым и достаточным условием устойчивости системы является отрицательность действительных частей всех корней характеристического уравнения системы. Характеристическое уравнение системы можно получить, если приравнять к нулю знаменатель передаточной функции системы (см. уравнения 5—13). Так, для одноступенчатых редукторов (см. уравнения 5—7) характеристическое уравнение равно  [c.146]

Рассмотрение консервативных систем помимо того, что оно может дать непосредственный ответ на ряд вопросов, представляет для нас особый интерес в силу следующих причин. Во-первых, мы здесь получим возможность уже довольно глубоко подойти к выяснению тех понятий (фазовой плоскости, особых точек, периодических движений, устойчивости, зависимости динамической системы от параметра), которые понадобятся для рассмотрения нашей основной задачи — теории автоколебательных систем. Во-вторых, консервативные системы интересны еще и потому, что мы в некоторых случаях сможем изучать автоколебательные системы только постольку, поскольку они близки к консервативным системам.  [c.104]

Управляемость как степень восприимчивости объекта управления к воздействию рулей и устойчивость, характеризующая как бы невосприимчивость к подобному воздействию, являются в известном смысле противоречивыми понятиями. Действительно, чем более устойчив летательный аппарат, снабженный мощным хвостовым оперением, тем труднее осуществить его поворот при помощи руля. Правильный выбор соответствующей аэродинамической схемы, конкретной конструкции летательного аппарата, его органов управления и стабилизации с точки зрения обеспечения наивыгоднейшей управляемости и устойчивости составляет важнейшую задачу современной аэродинамики, в частности аэродинамической теории управления и стабилизации. При этом обеспечение управляемости и устойчивости связано с исследованием динамических свойств такого аппарата, описываемых указанной системой уравнений возмущенного движения. Их коэффициенты определяются компоновочной схемой, которой соответствуют определенные аэродинамические и геометрические характеристики, а также параметры движения по основной траектории. В результате решения этих уравнений выбирают наиболее рациональную динамическую схему летательного аппарата и соответствующую ей конструктивную компоновку, которая бы удовлетворяла баллистическим, технологическим и эксплуатационным требованиям, а также заданной управляемости и устойчивости.  [c.6]


Понятие динамической устойчивости связано с двумя видами движения летательного аппарата — невозмущенным (основным) и возмущенным. Движение называют невозмущенным (основным), если оно происходит по определенной траектории со скоростью, изменяющейся в соответствии с каким-либо заданным законом, при стандартных значениях параметров атмосферы и известных начальных параметрах этого движения. Эта теоретическая траектория, описываемая конкретными уравнениями полета с номинальными параметрами аппарата и системы управления, также называется невозмущенной. Благодаря воздействию случайных возмущающих факторов (порывы ветра, помехи в системе управления, несоответствие начальных условий заданным, отличие реальных параметров аппарата и системы управления от номинальных, отклонение действительных параметров атмосферы от стандартных), а также возмущений от отклонения рулей основное движение может нарушиться. После прекращения этого воздействия тело будет двигаться, по крайней мере, в течение некоторого времени по иному закону, отличному от первоначального. Новое движение будет возмущенным.  [c.37]

Основные понятия. Пусть траектория L динамической системы задаётся отображением д (г)= Г ло. гДе х—совокупность координат точки в фазовом пространстве системы, 7 — оператор эволюции, преобразующий нач. состояние систе.мы с координатами Хд в состояние с координатами. v(/) в момент времени г. Траектория L устойчива по Ляпунову, если для сколь угодно малого е можно найти такое 5, что для любого нач. состояния. о, близкого к Хо, т, с. p(io.- o) всегда окажется р(Т о, Т хо)<е.. Здесь р(Х], Х2) — расстояние между точками. v, и л, в фазовом пространстве. Если  [c.254]

Как указывает подзаголовок этой книги, основным методом изложения избран генетический подход. Авторы стремятся объяснить генезис основных идей и понятий теории динамических систем с ударными взаимодействиями, а также продемонстрировать их естественность и эффективность. Ключевым моментом являются найденные недавно теоремы о предельном переходе, обосновывающие различные математические модели теории удара. Их суть заключается в следующем. Односторонняя связь, наложенная на систему, заменяется полем упругих и диссипативных сил. Затем коэффициенты упругости и вязкости некоторым согласованным способом устремляются к бесконечности. Доказывается, что движение такой свободной системы с фиксированными начальными данными стремится на каждом конечном промежутке времени к движению с ударами. При отсутствии диссипации энергии получаем упругий удар, а при надлежащем выборе диссипативной функции Рэлея (задающей структуру сил трения) можно получить в пределе модель Ньютона и более общий удар с вязким трением. Идея реализации связей с помощью предельного перехода в полных уравнениях динамики восходит к работам Клейна, Пранд-тля, Каратеодори и Куранта. Эти результаты позволяют, в частности, решить ряд новых задач об-устойчивости периодических движений с ударами, а также исследовать эволюцию биллиардных систем при неупругих столкновениях, когда имеется слабая диссипация энергии.  [c.4]

Частичная упорядоченность группы G позволяет довольно легко перенести на эти динамические системы все основные понятия, рассмотренные в предыдущих главах. Например, можно ввести понятия (u(a)-предельных точек, движениП, устойчивых по Пуассону, рекуррентных, почти периодических движений, движений, устойчивых по Ляпунову.  [c.127]


Смотреть главы в:

Продольные автоколебания жидкостной ракеты  -> Основные понятия устойчивости динамических систем



ПОИСК



Динамическая устойчивость

Понятие динамической системы

Система Устойчивость

Система основная

Система устойчивая

Системы Понятие

Системы динамические

Устойчивости понятие

Устойчивость динамических систем



© 2025 Mash-xxl.info Реклама на сайте