Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линеаризация основной системы дифференциальных уравнений

Линеаризация основной системы дифференциальных уравнений  [c.179]

В ее основе лежат предположения о малости изменений угла атаки и скорости перемещения точек поверхности тела по сравнению со скоростью набегающего потока. Это позволяет задачу о распространении нестационарных возмущений решать с помощью линеаризации по амплитуде колебаний. При этом основное поле, соответствующее стационарному обтеканию тела под некоторым средним углом атаки, определяется решением нелинейной системы дифференциальных уравнений газовой динамики.  [c.68]


Под сильно нелинейной с11стемой обычно понимают либо динамическую систему, не допускающую линеаризации в малом, либо систему, в которой проявляются нелинейные эффекты, не обнаруживаемые квазилинейной теорией. К таким системам относятся релейные системы автоматического регулирования, динамические системы с ударным взаимодействием, системы с люфтом и сухим трением и др. Одним из эффективных методов изучения динамики сильно нелинейных систем, поведение которых описывается дифференциальными уравнениями (4.1) с кусочно-гладкими правыми частями, является метод точечных отображений. Этот метод, зарождение которого связано с именем А. Пуанкаре и Дж. Биркгофа, был введен в теорию нелинейных колебаний А. А. Андроновым. Установив связь между автоколебаниями и предельными циклами А. Пуанкаре и опираясь на математический аппарат качественной теории дифференциальных уравнений, А. А. Андронов сущест-Еенно расширил возможности метода припасовывания и сформулировал принципы, которые легли в основу метода точечных отображений и позволили эффективно использовать этот метод при исследовании конкретных систем автоматического регулирования и радиотехники. С помощью метода точечных отображений оказалось возможным полностью решить ряд основных задач теории автоматическою регулирования и, в первую очередь, классическую задачу И. А. Вышнеградского о регуляторе прямого действия с сухим трением в чувствительном элементе [1, 2J. Была рас-  [c.68]

Нестационарые задачи были подробно изучены в случаях изотермического течения- В большинстве работ по дозвуковому движению газа в газопроводах при малых числах Маха конвективным инерционным членом в динамическом уравнении пренебрегают. Однако и в этом приближении нелинейная система основных дифференциальных уравнений одномерного движения оказывается гиперболической- По-вйдимому, И. А. Чарным (1951, 1961) впервые было предложено для дальнейшего упрош ения задачи при рассмотрении медленно изменяющ,ихся во времени движений газа отбрасывать также и локальный инерционный член динамического уравнения. В этом приближении задача становится параболической, хотя, вообще говоря, сохраняет нелинейный характер, И для того, и для другого приближений Чарным были предложены различные способы. линеаризации уравнений (в некоторых случаях задача сводится к уравнению теплопроводности). Им же были даны решения некоторых типичных задач в линейной постановке )  [c.735]


Данное трансцендентное уравнение является уравнением устойчивости упругой системы по МГЭ. Корни уравнения устойчивости определяют спектр критических сил, число которых (теоретически) бесконечно. Чтобы не пропустить первой критической силы, нужно начинать анализ поведения определителя (4.6) с достаточно малых значений сжимающих сил Г. Рекомендуется начальное значение Г выбирать из интервала (1/100 - 1/1000)Гть, где Гщь - минимальная критическая сила стержней основной системы метода перемещений. Шаг изменения сжимающей силы рекомендуется выбирать равным (1/100 - 1/1000) интервала, на котором выполняется поиск критических сил. Изменение знака определителя (4.6) или равенство его нулю свидетельствует о прохождении критической силы. Таким образом, методика определения критических сил не отличается от методики определения частот собственных колебаний упругих систем. Здесь можно использовать программы на языках ГоЛгап и Разса1 примеров №13, №14 с соответствующим изменением обозначений переменных. В рамках принятых допущений МГЭ позволяет определять точный спектр собственных значений (частот или критических сил). Однако, линеаризация дифференциальных уравнений и краевых условий, неучет деформаций  [c.122]

Решение системы нелинейных дифференциальных уравнений в частных производных классическими способами, т. е. интегрированием с соответствующими граничными условиями, для большинства основных задач невозможно. Поэтому для приведения непрерывной задачи к дискретному виду и ее решения требуются методы численного анализа. Значения неизвестных определяются на большом, но конечном числе узлов как в пространстве, так и по времени, чтобы получалось по возможности точное решение уравнений. В программе FIELDAY используются метод конечных элементов для уравнения Пуассона комбинированный метод (конечно-разностный/ко-нечных элементов) для уравнений непрерывности [16.10]. Скорость изменения плотности подвижных носителей во времени аппроксимируется по методу Эйлера. Полученные уравнения линеаризуются затем одним из двух методов. Первый предусматривает разделение системы трех дискретных уравнений уравнения решаются последовательно [16.11]. Применение второго, более сложного метода подразумевает одновременное решение всех уравнений с линеаризацией по методу Ньютона [16.12, 16.13]. Оба метода приводят к матричным уравнениям большой размерности с сильно разреженными матрицами для получения окончательного результата эти уравнения необходимо решать многократно.  [c.464]


Смотреть главы в:

Прикладная теория пластичности и ползучести  -> Линеаризация основной системы дифференциальных уравнений



ПОИСК



Дифференциальные системы

Линеаризация

Линеаризация дифференциальных уравнений

Линеаризация системы

Линеаризация системы уравнений

Линеаризация уравнений

Основные дифференциальные уравнения

Система дифференциальных уравнений

Система основная

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте