Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Германий — водород

Селениды германия Перекись водорода и азотная Нагревание  [c.51]

На напыленных пленках германия адсорбция водорода сопровождается увеличением проводимости р-типа [24, 25], пара-орто-водородной конверсией и Нг—Ог-обменом [26]. Так же как и германий, чистые кремниевые поверхности адсорбируют атомарный водород (но не молекулярный) с образованием монослоя, увеличивая его работу выхода до 0,4 эВ [28].  [c.26]


Найдем, в качестве примера, положение локальных разрешенных уровней примесных атомов V группы таблицы Менделеева в элементарных полупроводниках IV группы. Предположим, например, что в одном из узлов кристалла германия находится атом мышьяка, имеющий пять электронов в валентной оболочке. Четыре валентных электрона участвуют в образовании ковалентных связей с четырьмя соседними атомами германия.- Поскольку ковалентная связь является насыщенной, пятый электрон новой связи образовать не может. Находясь в кристалле, он сравнительно слабо взаимодействует с большим числом окружающих мышьяк атомов германия. Вследствие этого его связь с атомом As уменьшается и он движется по орбите большого радиуса. Его поведение подобно поведению электрона в атоме водорода. Таким образом, задача сводится к отысканию уровней энергии водородоподобного атома. При ее решении необходимо учесть следующие обстоятельства. Поскольку электрон движется не только в кулоновском поле иона мышьяка, но и в периодическом поле решетки, ему необходимо приписать эффективную массу т. Кроме того, взаимодействие электрона с атомным остатком As+, имеющим заряд Ze, происходит в твердом теле, обладающем диэлектрической проницаемостью г. С учетом этого потенциальная энергия электрона примесного атома  [c.237]

Висмут пара-Водород Гадолиний Галлий Гафний Гелий (г) Не Гелий (ж) Не Гелий (ж) Не Германий Гольмий орто-Дейтерий а-Диспрозий Европий а-Железо Золото Индий (н) Индий (с)  [c.202]

Для получения монокристалла по методу вытягивания из расплава тщательно очищенный от примесей германий расплавляют в установке, схема которой показана на рис. 8.11. Рабочим объемом служит герметическая водоохлаждаемая камера, внутри которой создается вакуум порядка 10 Па, или защитная газовая среда (из водорода или аргона высокой чистоты). Материал (М) помещается в тигель (А), насаженный на конец водоохлаждаемого штока (Б-1). Шток Б-1 при помощи электропривода приводится во вращение со строго постоянной скоростью. Кроме того, его можно опу-  [c.283]

В результате ряда химических операций из этих видов сырья получают двуокись германия высокой степени чистоты. Наиболее чистый германий получают восстановлением двуокиси германия водородом.  [c.530]

I — нихромовая печь сопротивления или индукционная катушка 2 — растущий монокристалл 3 — затравка 4 — кварцевая трубка для введения примесей 5 — шток для вытягивания J] вращения кристалла 6 — латунная плита 7 — кварцевый цилиндр 8 — смотровое окно 9 — патрубок для ввода водорода или аргона 10 — графитовый тигель 11 — кварцевый вкладыш 12 — расплавленный германий  [c.252]


На кристалл п-германия 1 кладется навеска индия 2 (рис. 8.10, а). Кристалл помещается в графитовую кассету 3 и выдерживается в печи при 500—600° С в атмосфере водорода или аргона. При этом индий расплавляется и в виде капли 4 растворяет в себе германий (рис. 8.10, б). При медленном охлаждении из расплава выпадает германий 5, насыщенный индием. Он кристаллизуется в форме монокристалла, ориентированного одинаково с монокристаллом подложки. Так как германий, содержащий индий, обладает р-про-водимостью, то на границе закристаллизованного расплава и монокристалла германия, обладающего п-проводимостью, образуется р—/г-переход (рис. 8.10, в). Капля индия 6 на поверхности германия играет роль омического контакта, обладающего практически линейной ВАХ. Такие контакты используются для подсоединения приборов в цепь.  [c.218]

Бор В (т). . . . Барий Ва (т). Бериллий Ее (т) Висмут Bi (т). . Бром Вг (г). . . Бром Bfj (г). . Бром Вгг (ж). . Углерод С (т) алмаз Углерод С(т) графит Кальций Са-о (т) Кадмий d-a (т) Церий Се (т). . Хлор I (г). . . Хлор lj (г). . Кобальт Со (т). Хром Сг (т). . . Цезий s (т). . Медь Си (т). . Дейтерий D (г). Дейтерий Dj (г) Фтор F (г). . . Фтор Fj (г). . . Железо Fe-з (т) Галлий Оа(т). . Германий Ое (т) Водород Н (г). Водород Hj (г).  [c.190]

Германий платина Sn 99 В1 1 280 5 Водород -  [c.273]

Для количественного определения образец сплавляют с едким натром или содой. Плав обрабатывают соляной кислотой и образующийся при этом тетрахлорид германия отгоняют в токе хлора. Тетрахлорид растворяют в 6 м. серной кислоте и осаждают германий в виде сульфида. Сульфид окисляют перекисью водорода и взвешивают образовавшуюся двуокись [35].  [c.210]

Вытягивание монокристалла 3 германия (фиг. 276) производится путем установки затравки 2 с совершенной кристаллической структурой, которая вырезается из монокристалла германия и помещается в зажиме. Последний вращается и может перемещаться в вертикальном направлении с заданной скоростью при помощи часового механизма. Затравку 2 вводят в расплавленный германий, находящийся в графитовом тигле. Вверху камеры находится отверстие для микролегирования 4. Вся операция производится в сосуде с атмосферой очищенного водорода.  [c.466]

Хлориды кремния или германия испаряются, транспортируются потоком водорода к подложке и восстанавливаются по реакции  [c.594]

Перенапряжение водорода на многих технически важных металлах было в широком диапазоне плотностей тока изучено в работе Печерской и Стендер [11]. Полученные авторами результаты представлены в табл. 6. Они хорошо описываются уравнением прямой Г1к = а + Ь In Коэффициент Ь для большинства металлов оказался близким к 0,10— 0,11, и лишь для цинка, кадмия и германия были получены более высокие значения.  [c.28]

Здесь flo=0,53-10 м — радиус первой боровской орбиты атома водорода. Для донорной примеси в германии получаем ai=64flo== si=34-10 м. Если учесть, что постоянная решетки германия равна  [c.238]

Остановимся еще на одной особенности ковалентной связи. Выше при решении уравнения Шредингера для молекулы водорода мы конструировали волновые функции с помощью линейной комбинации атомных орбиталей, выбирая за стартовые атомные орбитали изолированных атомов. Однако такой прямолинейный подход не всегда оказывается успешным и, например, для молекул и кристаллов, содержащих атомы углерода (а также кремния, германия и т. д.), он не привел к успеху. Так, изолированный атом С имеет электронную конфигурацию (ls) (2s) 2px2py. Естественно было ожидать, что углерод окажется двухвалентным с двумя перпендикулярными связями. Однако четырехвалентность углерода хорошо известна и, вообще говоря, она могла быть объяснена возбуждением при образовании молекул одного из 2з-элект-ронов и его переходом в 2рг состояние. В этом случае можно было ожидать появления трех более сильных и одной более слабой связей. Однако экспериментально было надежно доказано, что у углерода наблюдаются 4 равноправные связи с углами 109°28. Этот результат удалось полностью объяснить тем, что при вхождении атомов углерода в соединение (причем с самыми разными атомами углеродом при образовании алмаза, водородом или хлором при образовании СН4 или U и т. д.) происходит перестройка их электронной структуры так, что одна 25 и три 2р орбитали углерода гибридизуются, происходит sp гибридизация и  [c.111]

Германий получают из двуокиси GeOj путем восстановления в атмосфере водорода при 650—700° С. Порошок германия переплавляют в защитной атмосфере. Полученный слиток очищают методом зонной плавки и из него готовят монокристалл.  [c.289]


Чистый германий обладает металлическим блеском, характеризуется относительно высокой твердостью и хрупкостью. Он кристаллизуется в структуре алмаза, плавится при температуре 937 С. плотность при 25 °С равна 5.33 г/см . В твердом состоянии германий типичный ковалентный кристалл. Кристаллический германий химически устойчив иа воздухе при комнатной температуре. Размельченный в порошок германий при нагревании на воздухе до температуры 700 °С легко образует диоксид германия GeOj. Германий слабо растворим в воде и практически нерастворим в соляной и разбавленной серной кислоте. Активными растворителями германия в нормальных условиях является смесь а,зотной и плавиковой кислот и раствор перекиси водорода. При нагревании германий интенсивно взаимодействует с галогенами, серой и сернокислыми соединениями.  [c.284]

Первоначально применяют метод зонной плавки для тш,ательного удаления посторонних примесей. Слиток германия, в виде щминдра, помещенный в графитный тигель продолговатой формы в среде инертного газа (водорода), нагревают в поле высокой частоты. Индуктор контура высокочастотного генератора перемещают вдоль обрабатываемого германия, вследствие этого узкие зоны плавления движутся с витками индуктора (рис. 13.7). Большинство примесей, таких как марганец, кремний, железо, никель, обладают более высокой растворимостью в жидком германии, чем в твердой фазе н поэтому по мере движения зона плавления все больше насыщается такими примесями. При медленном процессе кристаллизации примеси из расплава вытесняются из твердой в жидкую фазу. В результате, после прохождения расплавленной зоны вдоль всего слитка примеси оказываются сконцентрированными в хвостовой части.  [c.183]

В настоящее время получены нитевидные кристаллы железа, олова, золота, платины, кадмия, германия, серы и окислов алюминия, хмагния, циркония, молибдена, ниобия и др. Еще в конце прошлого века был запатентован способ получения нитевидных кристаллов серебра путем восстановления его хлористой соли в атмосфере водорода. За последнее время этот способ претерпел значительные усовершенствования.  [c.66]

Из очищенного поликристалличе-ского германия или кремния выращивают, как правило, способом Чохраль-ского, монокристаллы, кристаллографическая ориентация которых определяется ориентацией затравки вращающейся и вытягиваемой из так же вращающегося расплава. Этот способ обеспечивает дополнительную очистку монокристалла полупроводника от примесей (табл. 3). Осуществляется он в вакууме или в атмосфере очищенного инертного газа или водорода. Чистота кремния определяется в основном содержанием примесного бора, очистка от которого методом безтигельной зонной плавки малоэффективна (табл. 2). Влияние же примесного бора на свойства кремния велико (табл. 4). В настоящее время разработаны способы очистки кремния, позволяющие получать монокристаллнческий кремний с электропроводностью, близкой по значению к собственной.  [c.401]

К 80-м годам XIX в. относятся первые заводские опыты электрохимического получения хлора на заводе Griesheim—Elektron (Германия). При разложении водных растворов хлорных солей щелочных металлов (калия или натрия) постоянным током при соблюдении определенных условий были получены одновременно три продукта хлор, водород и едкий натр (или едкое кали). В процессе электролиза на аяод выделяется газообразный хлор, а на катоде металлический натр, который, реагируя с водой, выделяет водород и образует гидрат окиси щелочного металла. Из трех названных продуктов особый (коммерческий) интерес представлял в то время едкий натр. Таким образом, получение хлора ока-  [c.173]

Начиная с 40-х годов, а именно с создания в Германии снаряда А-4, конструкторы зачастую использовали ту легкость, с которой жидкая концентрированная перекись водорода превращается в смесь водяного пара и кислорода при температуре 1 000° С в присутствии соответствующего катализатора. Такую парокислородную смесь можно использовать в турбонасосах для управления положением спутника на орбите или для распыления ракетного топлива, подаваемого в главную камеру ракетного двигателя. На рис. В-14 изображен сосуд для разложения перекиси водорода, используерлый в турбонасосах двигателя ракетной системы. Жидкая перекись водорода впрыскивается в сосуд сверху и попадает на поверхность слоя, состоящего из кусков катализатора. При 24  [c.24]

Германий четырех-клористый (в пересчете на Ge) 1 2 Фосфор желтый Фосфорный ангидрид Хлористый водород 0,03 1 5  [c.384]

О возможности сокращения расхода цинка при цементации кадмия путем добавки в растворы меди сообщается также в работе [ 157]. В то же время указывается на целесообразность предварительного выделения меди до содержания ее 0,2 - 0,4 кг/м с получением медного кека с низким содержанием кадмия (< 0,2 %) [ 158]. Показано, что этот прием улучшает качество очистки растворов от примесей. Зависимость скорости цементации кадмия от различных факторов изучена в работе [ 159]. В ней говорится, что скорость цементации тем больше, чем выше температура, количество цинковой пыли и содержание меди в растворе, и тем меньше, чем ниже концентрация ионов водорода в растворе. Вместе с тем рекомендуется цементацию кадмия вести в кислой среде для предотвращения его окиспения- Добавка меди в растворы при цементации кадмия вызывает усиленное выделение водорода в связи с тем, что перенапряжение водорода на меди значительно ниже, чем на кадмии и цинке. При очистке растворов от кадмия всегда наблюдается процесс обратного растворения его. В работах [ 160, 161] было показано, что скорость обратного растворения Кадмия тем больше, чем выше концентрация кислорода в растворе. Исследованию влияния мышьяка, сурьмы, германия, селена, теллура, а также температуры, pH и интенсивности перемешивания на процесс обратного растворения кадмия посвящена работа [ 162], В работе [ 163] для торможения процессов обратного растворения кадмия предложено использовать ПАВ. При этом обратное растворение кадмия не наблюдали даже при содержании в растворе никеля до 0,4 кг/м и меди до 0,1 кг/м .  [c.59]


Металлический германий устойчив на воздухе при комнатной температуре и быстро окисляется при температуре выше красного каления (600...700°С) с образованием двуоксида твердый германий не реагирует с азотом, водородом жидкий германий при температурах 1000...1100°С взаимодействует с водородом.  [c.380]

Введение в медные припои 0,2% Ge (например, в припой Си—37—38% Мп—2,1—2,7% Fe—1,2—1,6% Ni) исключает необходимость спсцпйльной сушки водорода, азота, аргона, диссоцииро-оамппго аммиака вследствие высокой химической активности германии. Соотношение в такой смеси содержания HjO, Oj, СО, На определяет не только направление реакции окисления — восстановления, но и процессы науглероживания — обезуглероживания стали. Для этого регулируется так называемый углеродный потенциал> газовой среды, т. е. концентрации Oj и HjO.  [c.141]

Высокая теплопроводность графитовых материалов делает их непревзойденными для изготовления теплообменной аппаратуры, работающей в высокоагрессивных средах. В производстве хлористого водорода применяют холодильни-1СИ из игурита, которые служат по семь лет и более. На ряде химических заводов работают абсорбционные колонны, изготовленные из бакелитированного графита и заполненные фторопластовыми кольцами. В Германии на этой стадии производства применяют аппараты из пропитанного графита — игурита, выполненные в виде многокамерных абсорберов для получения соляной кислоты, работающие по принципу прямотока и противотока.  [c.256]

Содержащиеся в a-Si H атомы водорода образуют конфигурации типа sSi-H, =Si-H2, -Si-Нз- Соотношение этих конфигураций в пленке в значительной степени зависит от условий выращивания. Полная концентрация водорода в пленках a-Si H, полученных в плазме тлеющего разряда, колеблется в пределах 7...12% (ат.). При нагреве пленок до температур, превышающих 300 °С, происходит частичная потеря водорода. Оборванные связи в a-Si H могут находиться в трех зарядовых состояниях нейтральном, положительном и отрицательном. При этом в нелегированных пленках концентрация заряженных дефектов в 3-4 раза больше, чем концентрация нейтральных. При введении в пленки атомов германия, углерода или азота картина дефектообразования существенно усложняется за счет появления оборванных связей между атомами различных элементов, образующих материал. При этом концентрация дефектов в пленке возрастает с увеличением содержания третьего элемента.  [c.102]

Нелегированный a-Si H имеет большую фотопроводимость в видимой области спектра. Фоточувствительность (отношение фотопроводимости к темновой проводимости) составляет 10 ... 10 . При легировании фотопроводимость возрастает, а фоточувствительность уменьшается. Аналогичные закономерности наблюдаются и в твердых растворах на основе a-Si H, которые обладают меньшей фотопроводимостью и фоточувствительностью, чем сам гидрированный кремний. При температурах выше комнатной основными центрами рекомбинации неосновных носителей заряда в аморфных гидрированных полупроводниках являются оборванные связи, концентрация которых в твердых растворах всегда больше, чем в a-Si H. Ширина оптической запрещенной зоны в аморфных гидрированных полупроводниках возрастает по мере увеличения концентрации в них водорода, и для a-Si H она составляет 1,6...1,8эВ. Введение в пленки a-Si H германия позволяет уменьшить эту величину до 1,0 эВ, а введение углерода и азота увеличить ее до значений 2,5...3,2эВ и 5 эВ соответственно.  [c.103]

Ультрачистый водород находит применение в процессах термической обработки — светлого отжига магнитных материалов транс( орматерной стали, пермаллоя, сплавов альнико и др. в процессах получения монокристаллов полупроводников — восстановление окислов германия и силагюв кремния в процессах восстановления окислов металлов, в том числе окислов хрома и марганца в процессах термической обработки коррозионно-стойкой стали и жаропрочных сплавов в процессах спекания железных, железоникелевых сплавов и сплавов тугоплавких металлов. (Установка для получения ультрачистого водорода разработана Всесоюзным научно-исследовательским институтом металлургической теплотехники — ВНИИМТ.)  [c.146]

При использовании электроразрядного реактора (рис. 4.6.6, з) фирмы Кнапзак-Грисхейм (Германия) для пиролиза углеводородов до ацетилена в водородной плазме, водород вводят в верхнюю часть аппарата. Углеводородное сырье подают закрученным потоком вдоль конической части реакционного канала. Оно обдувает стенки реактора, поднимается, смешивается с водородом, пиролизуется и вытекает в нижнюю часть аппарата, в которой осуществляется закалка целевых продуктов диспергированной жидкостью. Графитовые электроды, к которым подводится напряжение трехфазного тока, подают в аппарат автоматически. Встречно-вихревой ввод реагентов позволяет снизить потери теплоты, предотвратить отложение конденсированных продуктов на стенках реакционного канала и предварительно подогреть сырье перед его смешением с водородной плазмой.  [c.448]

При пиролизе жидких углеводородов наиболее перспективны реакторы, использующие в качестве плазмообразующего газа водород, например реактор фирмы Кнапзак-Грисхейм (Германия, рис. 4.6.7, в). Водород нагревается в электрической дуге, горящей между двумя или тремя расходуемыми графитовыми электродами. Исходное сырье подается в реакционную камеру тангенциально с большой скоростью, поэтому оно поднимается вверх вдоль конусообразного канала, в котором смешивается с водородной плазмой. Такая  [c.449]


Смотреть страницы где упоминается термин Германий — водород : [c.396]    [c.379]    [c.396]    [c.351]    [c.283]    [c.530]    [c.184]    [c.256]    [c.34]    [c.206]    [c.197]    [c.291]    [c.749]    [c.1021]    [c.175]    [c.616]    [c.308]    [c.162]   
Смотреть главы в:

Поверхностные свойства твердых тел  -> Германий — водород



ПОИСК



Адсорбция водорода на германии и кремнии

Водород

Герман

Германии

Германий



© 2025 Mash-xxl.info Реклама на сайте