Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрируемые неголономные системы

Интегрируемые неголономные системы  [c.145]

Голономные и неголономные системы. Если уравнение связи Пфаффа (1.7.1) интегрируемо (после умножения на соответствующий интегрирующий множитель), то система называется голономной ). Уравнение связи в этом случае можно записать в конечной форме  [c.31]

Таким образом, для неголономной системы не представляется возможным выбрать лагранжевы координаты так, чт0 бы число их равнялось числу степеней свободы. Наименьшее возможное число лагранжевых координат больше числа степеней свободы на число уравнений связи, не допускающих интегрируемых комбинаций.  [c.80]


И два аналогичных равенства. В этом случае тело имеет одну неподвижную точку, система является голономной с тремя степенями свободы и остается рассмотреть лишь вопрос об ориентации тела при его вращении около неподвижной точки. Если же соотношение (5.9.3) в различные моменты времени относится к различным частицам (например, к частицам, находящимся в точке контакта тела с поверхностью, по которой оно катится), то уравнение (5.9.3) и два аналогичных уравнения не являются вполне интегрируемыми и система в целом оказывается неголономной.  [c.82]

Легко видеть, что уравнения Пфаффа (5.9.13) и (5.9.15) не допускают интегрируемых комбинаций. Система неголономна и имеет три степени свободы наименьшее число лагранжевых координат, необходимых для определения положения и ориентации системы, равно пяти. В качестве таких координат можно выбрать т), 0, ф, г . В данном примере к = 5, А = 3, 1 = 2.  [c.83]

Отметим только качественные отличия в движении систем с интегрируемыми и с неинтегрируемыми (неголономными) связями. Кинематические связи в обоих случаях не изменяют конфигурационного многообразия системы, и система может находиться в любой точке многообразия. Однако если в случае неголономных связей систему можно из любой точки многообразия перевести подходящими силами в любую другую, то для случая вполне интегрируемых связей система из точки q° может быть переведена в точку только, если  [c.131]

Мы будем рассматривать случай неголономной системы с I степенями свободы в определяющих координатах (г = 1,..., п), стесненных как интегрируемыми уравнениями  [c.29]

Конечные связи и дифференциальные интегрируемые связи составляют класс голономных механических связей, а дифференциальные неинтегрируемые связи —класс неголономных связей. Соответственно системы, содержащие лишь конечные или дифференциальные интегрируемые связи, относятся к классу голономных систем., а системы, содержащие дифференциальные неинтегрируемые связи, — к классу неголономных систем. Далее мы не будем заниматься неголономными связями, и поэтому опускаем их классификацию (рис. IV.7). Что же касается голономных связей, то их можно подразделить далее в зависимости от того, содержат ли равенства, выражающие эти связи, в явной форме время. В тех случаях, когда эти равенства не содержат время явно, механическая связь называется стационарной или склерономной. В тех случаях, когда время явно входит в эти равенства, связь называется нестационарной или реономной. Обычно стационарные связи имеют место в тех случаях, когда поверхности или кривые, на которых должны находиться материальные точки, либо расстояния между этими точками не меняются со временем. Наоборот, в тех случаях, когда материальные точки должны находиться на кривых или поверхностях, которые сами меняются со временем, связи оказываются реономными.  [c.148]


Связи делятся также на голономные и неголономные. Г тоном-ными (интегрируемыми) называются связи, которые накладывают ограничения на положения точек материальной системы (конечно, после дифференцирования уравнения связи по времени можно получить также зависимость между координатами и скоростями точек системы).  [c.337]

Механические системы, на которые наложены геометрические и кинематически интегрируемые связи, называют голономными. Механические системы, на которые наложены кинематические связи, определяемые уравнениями (12.21) или в частном случае уравнениями (12.31), называют неголономными.  [c.16]

Не существует яи одной интегрируемой комбинации, и первоначальная форма уравнений связи (1.9.1), (1.9.2) не может быть упрощена. Система неголономна.  [c.33]

И числа степеней свободы, и прежде всего возникает задача об отыскании критериев, позволяющих выяснить, является ли рассматриваемая система голономной или неголономной. В случае системы с линейными кинематическими связями эта последняя задача (если оставить без внимания особые случаи). состоит в отыскании необходимых и достаточных условий полной интегрируемости системы уравнений  [c.34]

Многие задачи динамики твердого тела могут быть проинтегрированы и другим, восходящими к Эйлеру и Якоби, способом. Речь идет о теории последнего множителя, в которой для интегрируемости системы в квадратурах, кроме достаточного количества первых интегралов, необходимо установить существование некоторой инвариантной меры. Достоинством этого метода является то, что он может быть применен не только к гамильтоновым системам, но, вообще говоря, к произвольным, например, к неголономным. Ряд неголономных систем, имеющих нетривиальную меру и интегрируемых по теории последнего множителя, указал С. А. Чаплыгин [179]. В этой книге мы их не рассматриваем, но подчеркнем, что в XIX веке под интегрируемостью большинства задач динамики твердого тела понимали именно интегрируемость по Эйлеру-Якоби, так как гамильтонова структура.  [c.75]

Основным различием между уравнениями Лагранжа первого и второго рода систем с конечным числом степеней свободы является то, что уравнения Лагранжа первого рода содержат компоненты реакций связей, а уравнения Лагранжа второго рода эти компоненты не содержат. Достигнуть исключения компонент реакций геометрических и интегрируемых кинематических связей из уравнений движения системы с конечным числом степеней свободы можно, введя соответствующим образом выбранные обобщенные координаты. Если выразить позиционные координаты системы через целесообразно выбранные обобщенные координаты, уравнения геометрических и кинематических интегрируемых связей должны быть тождественно удовлетворены. Это позволяет отделить задачу определения закона движения системы от задачи определения реакций связей [40]. Если на систему наложены кинематические неинтегрируемые связи, задача осложняется, хотя и здесь можно локально достигнуть исключения компонент реакций связей посредством введения неголономных координат (квазикоординат), но полное разделение исследования движения несвободной системы на определение закона движения и определение реакций связей возможно лишь в частных случаях.  [c.56]

Термин голономный происходит от греческих слов бХо (целый, по смыслу интегрируемый) и voixo (закон). Различие между голономиыми и неголономными системами подробно проанализировал Генрих Герц. Будучи человеком редкой гениальности, он за свою короткую жизнь (он умер в возрасте неполных тридцати семи лет) открыл электромагнитные волны и написал книгу по основам механики [6 . И то и другое принадлежит к числу важнейших научных достижений.  [c.31]

Когда ур-ние (2) может быть проинтегрировано по времени, соответствующая кинематич. связь наз. и в-тегрируемой и эквивалентна геом. связи. Геом. к интегрируемые кинематич. связи носят общее название голономных С. м. (см. Голономная система). Кинематич. неинтегрируемые С. м. наз. н е г о лo-E о м н ы м и (см. Неголономная система).  [c.472]

Механическая система с неинтегрируемыми кинематическими связями, не сводящимися к геометрическим, называется неголономной системой. Неголономная система характеризуется тем, что для нее не существует обобщенных координат, произвольным изменениям которых соответствовало бы движение системы, не нарушающее ее связей. Подчеркнем, что согласно этому определению наличие одной неинтегрируемой связи еще не означает не-голономности системы, поскольку эта связь может оказаться интегрируемой в силу остальных уравнений связей. Так, например, каждая из связей  [c.12]


Такая связь, которая аналитически выражается неинтегрируе-мым уравнением Пфаффа, называется неголономной связью ) связи, выражаемые конечными уравнениями (или интегрируемыми уравнениями Пфаффа), получают название голономных связей. Систему, в числе связей которой имеется хотя бы одна неголономная связь, будем называть неголономной системой.  [c.363]

Когда ур ние (2) может быть проинтегрировано по времени, соответствующая кинематич. связь наз. интегрируемой и эквивалентна геом. связи. Геом. и интегрируемые кинематич. связи носят общее назв. г о л о-н о м н ы X С. м. (см. Голономные системы). Кинематич. неинтегриру-емые С. м. наз. н е г о л о н о м н ы-м и (см. Неголономные системы).  [c.672]

Уравнения (7.73) являются интегрируемыми связями, а уравнения (7,74) —уравнениями неголономних связей. Таким образом, рассматриваемая система имеет две степени свободы.  [c.205]

Если уравнение связи можно записать в виде /(г , t) = 0, не содержащем проекщ1И скоростей точек системы, то связь называется геометрической конечной, голономной). В примерах 1, 2 связи геометрические. Если же в уравнение связи /(iv, Vv, t)=0 входят проекции скоростей Vv, то связь называется дифференциальной (ки-нелшгаческой). Дифференциальную связь /(г,, Vv, i)=0 называют интегрируемой, если ее можно представить в виде зависимоспи между координатами точек системы и временем (как в случае геометрической связи). Неинтегрируемую дифференциальную связь называют еще неголономной связью.  [c.24]

Отсюда следует, что число степеней свободы механизма как с голономными, так и с неголономными связями, всегда равно числу независимых вариаций обобщенных координат. В голо-номных системах, т. е. в системах с геометрическими и интегрируемыми дифференциальными связями, все вариации обобщенных координат независимы и число степеней свободы совпадает с числом обобщенных координат. На этом основании формулу (1.15) MO/I HO представить в виде  [c.49]

Условия связи вида F qi. .. Qf) = onst называют, по Герцу голо-номными (греческое holes = латинскому integer = цельный, интегрируемый), условия же связи вида (7.3), которые не могут быть проинтегрированы в общем виде, называются неголономными. Простейшим примером неголономной связи является колесо с острыми краями на плоском основании (см. задачу II. 1 сюда относятся также сани и шарнирный механизм велосипеда). Поступательное движение такого колеса ограничено тем, что оно может происходить только в направлении самого колеса (т. е. что точка касания колеса с основанием может перемещаться только по направлению касательной к колесу). Несмотря на это, колесо может достигнуть любой точки плоского основания хотя для этого может оказаться необходимым движение по траектории с острием (точкой возврата). Таким образом, колесо обладает при конечных движениях большим числом степеней свободы чем при бесконечно малом движении. Вообще, система, подчиненная г неголономным условиям связи и имеющая / степеней свободы при конечных движениях, имеет только / — г степеней свободы при бесконечно малом движении. Об этом более подробно см. задачу II. 1.  [c.71]

Лагранжевы системы с линейными связями Герц (Н. Hertz) разделил на голоиомные и неголономные в зависимости от того, являются ли наложенные на них связи вполне интегрируемыми или нет. Особенно просто определение интегрируемости выглядит в случае однородных связей, не зависящих явно от времени  [c.29]


Смотреть страницы где упоминается термин Интегрируемые неголономные системы : [c.372]    [c.322]    [c.34]    [c.539]    [c.683]    [c.95]    [c.163]    [c.479]    [c.206]    [c.20]    [c.352]   
Смотреть главы в:

Динамические системы-3  -> Интегрируемые неголономные системы



ПОИСК



Интегрируемые системы

Системы неголономные



© 2025 Mash-xxl.info Реклама на сайте