Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другая форма дисперсионного уравнения

Другая форма дисперсионного уравнения  [c.46]

Трансцендентные уравнения (2.16) и другие подобные уравнения, во никающие в родственных задачах о волноводном распространении, представляются не очень сложными для проведения вычислений с помощью современных ЭВМ. При этом рассматриваемая плоскость (I, Q) может быть покрыта системой точек — корней дисперсионных уравнений, вычисленных практически с любой точностью. Однако такой процесс может быть связан с большими затратами времени, и, кроме того, представленная в такой форме информация мало полезна, поскольку она не систематизирована. В связи с этим большое значение для систематизации расчетных данных и уменьшения объема вычислений имеют методы качественного анализа дисперсионных соотношений, развитые в работах [109, 236, 249]. Структура спектра и поведение соответствующих мод в значительной мере проясняются также асимптотическим анализом, развитым в работах [25, 103].  [c.119]


Уравнение (3.3.2) можно использовать для анализа эволюции импульсов с другими формами огибающей и начальной частотной модуляцией. В качестве примера на рис, 3.7 показана эволюция супергауссовского импульса без начальной частотной модуляции на длине волны нулевой дисперсии (Р2 = 0) при С = 0и 1 = 3в уравнении (3.2.23). Ясно, что формы импульсов могут сильно меняться в зависимости от начальных условий. На практике чаще представляет интерес не детальная структура импульса, а степень его дисперсионного уширения. Так как длительность импульсов, показанных на рис. 3.6, 3.7, измерять на уровне половины максимальной интенсивности не совсем правильно,-будем использовать среднеквадратичную длительность, определяемую уравнением (3.2.25). В случае входного гауссовского импульса можно получить простое аналитическое выражение для о, которое утитывает действие Р2, Рз и начальной частотной модуляции С на дисперсионное уширение [10],  [c.70]

Прежде чем закончить рассмотрение селективного затухания, следует рассмотреть недавнюю статью Тамма и Вейса [17]. Эти авторы рассчитали частотную зависимость затухания нормальных волн, распространяющихся в пластинке, обладающей конечным внутренним трепием. Авторы вводили потери в материале посредством задания комплексной формы упругих постоянных. Другие примеры такого подхода моячно найти в пятой главе книги Ивинга и др. [56]. В статье Тамма и Вейса затухание в среде вводится заменой обычных модулей упругости в дисперсионных уравнениях Релея — Лэмба на комплексные модули упругости. В частности, приводятся резул1>таты для случая, когда материал пластинки имеет коэффициент Пуассона /з и угол потерь 0,2 как  [c.199]

Другой метод, использующий одновременно пространственное и асимптотическое разложения, предложили Хегемир и Найфэ [33], которые исследовали распространение плоских волн перпендикулярно слоям слоистого композита. Усечение асимптотических последовательностей приводит к цепочке моделей. Для оценки точности той или иной модели был исследован спектр фазовых скоростей. Сохранение всех членов асимптотической последовательности приводит к точному спектру (что обсуждалось в разд. III). Было установлено, что дисперсионная модель первого порядка обеспечивает точность более высокую, нежели некоторые из существующих теорий. Результаты исследования распространяющегося импульса хорошо согласуются с точной теорией. Было также показано, что уравнения теории дисперсии первого порядка могут быть приведены к стандартной форме уравнений теории бинарных смесей.  [c.381]


Нелинейные свойства оптических световодов самым ярким образом проявляются в области аномальной (отрицательной) дисперсии. Здесь могут существовать так называемые солитоны-образования, обусловленные совместным действием дисперсионных и нелинейных эффектов. Сам термин солитон относится к специальному типу волновых пакетов, которые могут распространяться на значительные расстояния без искажения своей формы и сохраняются при столкновениях друг с другом. Солитоны изучаются также во многих других разделах физики [1-5]. Солитонный режим распространения в волоконных световодах интересен не только как фундаментальное явление, возможно практическое применение солитонов в волоконно-оптических линиях связи. В данной главе изучается распространение импульсов в области отрицательной дисперсии групповых скоростей, особое внимание уделяется солитонному режиму распространения. В разд. 5.1 рассматривается явление модуляционной неустойчивости. Показано, что при наличии нелинейной фазовой самомодуляции (ФСМ) стационарная гармоническая волна неустойчива относительно малых возмущений амплитуды и фазы. В разд. 5.2 обсуждается метод обратной задачи рассеяния (ОЗР), который может быть использован для нахождения солитонных рещений уравнения распространения. Здесь же рассматриваются свойства так называемого фундаментального солитона и солитонов высщих порядков. Следующие две главы посвящены применению солитонов в некоторых системах. В разд. 5.3 рассматривается солитонный лазер разд. 5.4 посвящен использованию солитонов в волоконно-оптических линиях связи. Нелинейные эффекты высщих порядков, такие, как дисперсия нелинейности и задержка по времени нелинейного отклика, рассматриваются в разд. 5.5.  [c.104]

Этот раздел мы можем завершить вопросом насколько точным является дисперсионное соотношение (18) для волн, не имеющих в точности синусоидальную-форму (14) Заметим, что в выражении (14) нет зависимости от координаты г/, что дает чисто двумерное движение, одинаковое для каждой плоскости (такой, как изображена на рис. 50), параллельной плоскости xz. Гребни волн, например, должны неограниченно простираться под прямыми углами к такой плоскости. Однако для того чтобы синусоидальные во.лны с хорошей точностью удовлетворяли соотношению = gk, достаточно того, чтобы их зависимость от у была настолько плавной, что член d (f dy в уравнении Лапласа (5) был бы намного меньше, чем осталытые два члена (прп выводе формул (16) — (18) они полагаются в точности уравновешивающими друг друга). Вообще говоря, это означает, что волны Ихмеют длнпные гребни, согласованно простирающиеся в направлении осп у на расстояние многих длин волны. Лишь упомянув здесь об этом, мы отложпм до разд. 3.6 обсуждение с.лучаев отклонения от поведения чисто синусоидальных волн.  [c.266]

Интерес к длинноволновой асимптотике уравнения Орра-Зоммер-фельда возникает, в частности, потому, что собственные решения линеаризованных уравнений свободного взаимодействия [78, 79, 81] являются предельной формой волн Толлмина-Шлихтинга в несжимаемой жидкости с прилегающими к стенке критическими слоями [52, 53]. При этом дисперсионное соотношение, которое в точности совпадает с вековым уравнением задачи Орра-Зоммерфельда, содержит целый спектр решений, не рассмотренный в [51, 174, 175]. Первая мода колебаний из указанного спектра может быть как устойчивой, так и неустойчивой. Ниже строятся решения для каждой из подобластей (включая критический слой), на которые при больших числах Рейнольдса разделяется возмущенное поле скоростей в линейной задаче устойчивости. Выводятся дисперсионные соотношения, описывающие окрестности верхней и нижней ветвей нейтральной кривой для пограничного слоя. Данные соотношения, содержащие нейтральные решения как частный случай, асимптотически переходят друг в друга в неустойчивой области между обеими из этих ветвей.  [c.55]

В анизотропных средах кроме направления распространения волнового пакета имеется и другое вьщеленное направление. В случае плазмы это направление внешнего магнитного поля. В таких средах дисперсионные и дифракционные эффекты становятся неразличимыми. Появляются два механизма дисперсии один связан с эффектом дебаевской экранировки и действует только вдоль магнитного поля, другой обусловлен эффектами конечности ларморовского радиуса частиц. Это хорошо видно на простом примере низкочастотных ионно-звуковых волн (частоты которых много меньше со /). В линейном приближении они описываются уравнением (1.14). Нелинейность, как и в предьщущем случае, можно найти в пренебрежении дисперсией. Считая, что пакет имеет блинообразную форму вдоль внешнего магнитного поля кг >  [c.45]



Смотреть страницы где упоминается термин Другая форма дисперсионного уравнения : [c.106]    [c.382]    [c.36]    [c.88]    [c.76]    [c.378]    [c.65]   
Смотреть главы в:

Элементарные возбуждения в твёрдых телах  -> Другая форма дисперсионного уравнения



ПОИСК



Другие формы

Уравнение дисперсионное

Уравнения форме

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте