Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения твердого тела и их интегрирование

УРАВНЕНИЯ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА И ИХ ИНТЕГРИРОВАНИЕ  [c.27]

В книге рассмотрены основные формы уравнений движения твердого тела, включая движение в потенциальных полях, в жидкости (уравнения Кирхгофа), с полостями, заполненными жидкостью. Приведены условия понижения порядка этих уравнений и существования циклических переменных. Собраны практически все известные к настоящему времени интегрируемые случаи и способы их явного интегрирования. Для исследования широко используются компьютерные методы, позволяющие наглядно представить картину движения. Большинство результатов книги принадлежат авторам.  [c.2]


В общем случае главный момент внешних сил зависит от координат центра инерции твердого тела, мгновенной угловой скорости и углов Эйлера. Исключая из уравнений (III. 4) проекции мгновенной угловой скорости на основании уравнений (III.5), получим вместе с (III.1) шесть дифференциальных уравнений движения тела с координатами центра инерции и углами Эйлера в качестве неизвестных функций. Эти уравнения нелинейны и их интегрирование связано с большими математическими трудностями.  [c.401]

Применение первого метода связано со значительными трудностями, возникающими вследствие специфического характера взаимодействия частиц жидкой или газовой среды между собой. Если при движении твердого тела расстояние между двумя любыми точками тела сохраняется неизменным, то при движении жидкости (газа) из-за легко-подвижности частиц расстояние между ними все время изменяется, что и приводит к усложнению исходных дифференциальных уравнений и их интегрирования. Поэтому в настоящем прикладном курсе главным образом применяется второй метод — метод гидравлики.  [c.7]

Таким образом, в рассматриваемом случае решение задачи о движении твердого тела вокруг неподвижной точки распадается на две последовательные задачи интегрирования систем трех уравнений первого порядка. В общем же случае величины М , М , Mz являются функциями времени, углов Эйлера и их производных. Тогда уравнения (4) и (5) надо интегрировать совместно.  [c.189]

Эти шесть уравнений (1) и (2) определяют т], С, р , д , г . Их можно получить непосредственно, исходя из уравнений движения свободного твердого тела, умножением этих уравнений на (И и последующим интегрированием от /о ДО  [c.448]

В ЭТИХ уравнениях и в их интегрировании и заключается, таким образом, вся теория гидродинамики. Даламбер для их нахождения сначала воспользовался несколько усложненным методом, позднее он предложил более простой метод однако этот метод, основанный на свойственных жидкостям законах равновесия, превращает гидродинамику в науку, обособленную от динамики твердых тел. Произведенное нами в первой части настоящего труда объединение в одной и той же формуле всех законов равновесия тел как твердых, так и жидких и сделанное нами применение этой формулы к законам движения, естественно, приводят нас к тому, чтобы точно так же объединить динамику и гидродинамику, как ветви единого принципа и как выводы из единой общей формулы.  [c.308]

Следующим этапом в развитии теории удара является работа Герца, продолженная затем Динником. В задаче Герца соударяющиеся тела (шары) предполагаются абсолютно твердыми, за исключением небольших участков вблизи контактной площадки. Масса этих участков не учитывается, а зависимо сть между действующей силой и местной деформацией 6 принимается на основе решения статической контактной задачи р=,кЬ 12 — постоянная, зависящая от свойств материалов и геометрии поверхностей тел). После интегрирования дифференциальных уравнений движения тел определяются их перемещения во время удара, действующая сила и время ее действия.  [c.13]


Постановка вопроса. Из опыта известно, что твердые тела под влиянием внешних сил претерпевают некоторые изменения формы, исчезающие при постепенном прекращении действия сил внезапное же прекращение действия сил вызывает колебательные движения. Задачей математической теории упругости является точный количественный учет возникших таким путем изменений геометрической формы и механического состояния тела. Пред нами стоит, таким образом, вопрос об определении деформаций и напряженного состояния твердого тела, если известны как действующие на него внешние силы так и те условия закрепления, которым оно подчинено. Метод, которым мы руководствуемся, приступая к ре шению этих задач, есть обычный метод математической физики. В первую очередь определяются механические величины, характеризующие физическую картину напряженного состояния материала затем, геометрические величины, определяющие деформацию тела. Зависимость между механическими и геометрическими величинами определяется из опыта их математическая формулировка приводит нас к так называемым основным уравнениям теории упругости, иными словами, к уравнениям с часТными производными, интегрирование которых отвечает в каждом отдельном случае на поставленные выше вопросы. Кроме составления этих основных уравнений, главным содержанием математической теории упругости является еще теория их интегрирования.  [c.5]

Замечание. В динамике твердого тела для поиска интегралов, частных решений и анализа устойчивости обычно используется алгебраическая форма уравнений движения. Она также является предпочтительной при их численном интегрировании, вследствие того, что каноническая форма содержит особенности, связанные с вырождением локальных переменных в отдельных точках, например, углов Эйлера в полюсах сферы Пуассона, см. 2, 3).  [c.31]

Основные результаты этого исследования, теоремы завихренности Гельмгольца, сегодня хорошо известны, и их можно найти в большинстве учебников. Для усвоения же этого материала вряд ли нужно обращаться к оригинальной статье. Однако интересно ознакомиться с мотивацией Гельмгольца к изучению, прежде всего, вихревого движения. Вот что он говорит (в переводе Тэта) До сих пор при интегрировании гидродинамических уравнений допускалось, что составляющие скорости каждого элемента жидкости в трех направлениях, перпендикулярных друг другу, являются дифференциальными коэффициентами (по отношению к координатам) определенной функции, которую мы назовем потенциалом скорости. Лагранж без сомнений показал, что это допущение законно, если движение жидкости вызвано силами, имеющими потенциал, и продолжается под их действием а также что влияние движущихся твердых тел, контактирующих с жидкостью, не влияет на законность такого допущения. И, поскольку многие природные силы, поддающиеся математически точному определению, можно выразить в виде дифференциальных коэффициентов потенциала, еще большее число математически исследуемых случаев движения жидкости принадлежит к тому классу, в котором существует потенциал скорости.  [c.682]

В начале развития динамики неголономных систем дифференциальные 93 уравнения движения были выведены в различном виде Остроградским, Феррерсом и Раусом. Общая методика интегрирования этих уравнений не была разработана, а их структура, связанная с наличием декартовых координат или множителей неголономных связей, создавала значительные трудности при решении конйретных задач (о качении твердых тел). Таким образом,в конце XIX в. проблема составления динамических уравнений неголономной механики в лагранжевых координатах без множителей связей типа уравнений Лагранжа второго рода была вполне актуальной.  [c.93]

Понятия о колебательных движениях и волнах сформулировались в начале XIX в. В то время получены линейные решения уравнений теоретической механики и гидродинамики, описывающие движения планет и волн на воде. Несколько позднее благодаря наблюдательности Д. С. Рассела [186], теоретическим исследованиям Б. Римана [97, 99] и других исследователей сформировалось понятие о нелинейных волнах. Однако, если линейные колебания и волны были весьма полно изучены в XIX в., что нашло отражение в фундаментальном курсе Д. Рэлея [177], то этого нельзя сказать о нелинейных колебаниях. Сознание того, что нелинейные уравнения содержат в себе качественно новую информацию об окружающем мире пришло после разработки А. Пуанкаре новых методов их изучения. Созданные им и другими исследователями методы интегрирования нелинейных уравнений нашли широкое применение в радиофизике [6] и механике твердых тел [73]. Более медленно нелинейные понятия и подходы входили в механику жидкости и твердого деформируемого тела. Показательно, что первые монографии, посвященные нелинейному поведению деформируемых систем, были опубликованы на-рубеже первой половины XX в. [39, 72, 107, 153]. В это же время резко возрос интерес к нелинейным колебаниям и волнам в различных сплошных средах. Сформировались нелинейная оптика, нелинейная акустика [97, 173], теория ударных волн [9, 198] и другие нелинейные науки [184, 195, 207]. В них рассматриваются обычно закономерности формоизменения волн, взаимодействия их друг с другом и физическими полями в безграничных средах. Нелинейные волны в ограниченных средах исследованы в значительно меньшей степени, несмотря на то что они интересны для приложений. В последнем случае важнейшее значение приобретает проблема формирования волн в среде в результате силового, кинематического, теплового или ударного нагружения ее границ. Сложность проблемы связана с необходимостью учета физических явлений, которые обычно не проявляют себя вдали от границ, таких как плавление, испарение и разрушение среды, а также взаимодействия соприкасающихся сред. В монографии рассмотрен широкий круг задач генерации и распространения нелинейных волн давления, деформаций, напряжений в ограниченных неоднородных сплошных средах. Большое внимание уделено динамическому разрушению и испарению жидких и твердых сред вблизи границ, модельным построениям для адекватного математического описания этих процессов. Анализируется влияние на них взаимодействия соприкасающихся сред, а также механических и тепловых явлений, происходящих в объемах, прилегающих к границам.  [c.3]



Смотреть страницы где упоминается термин Уравнения движения твердого тела и их интегрирование : [c.256]    [c.187]    [c.12]   
Смотреть главы в:

Динамика твёрдого тела  -> Уравнения движения твердого тела и их интегрирование



ПОИСК



Движение твердого тела

Движение твердых тел

Интегрирование

Интегрирование уравнений

Интегрирование уравнений движени

УРАВНЕНИЯ движения твердых тел

Уравнения движения твердого тела

Уравнения движения — Интегрирование



© 2025 Mash-xxl.info Реклама на сайте