Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основной металл, свариваемость, напряжения и деформации при сварке

Основной металл, свариваемость, напряжения и деформации при сварке  [c.137]

В тех случаях, когда нельзя обеспечить глубину проплавления по всему сечению шва (большая толщина свариваемых изделий, малая мощность источника тепла, затруднения формирования шва из-за большого объема сварочной ванны, необходимость уменьшения доли основного металла в шве и т. п.), производят специальную разделку кромок. Разделка заключается в скосе кромок для того, чтобы опустить сварочную ванну вниз для обеспечения провара корня шва. При этом на кромках оставляют притупление для предотвращения прожогов. При сборке свариваемых изделий между кромками обязательно оставляют зазор, необходимый для приближения источника тепла к притуплению, а также для уменьшения деформаций и напряжений при сварке. Исключение составляет нахлесточное соединение, где наличие зазора нежелательно, так как ухудшаются условия работы всей конструкции.  [c.98]


Общие сведения. Величина и распределение напряжений и деформаций зависят от жесткости свариваемых конструкций и изделий при этом большое значение имеет толщина металла. При сварке металла толщиной до 3 мм проявляются преимущественно большие деформации, а напряжения ничтожны. Сварка металла толщиной от 4 до 16 — 18 мм сопровождается значительными деформациями при этом с увеличением толщины в большой степени начинают проявляться остаточные напряжения. При сварке металла толщиной от 18 до 50—60 мм основным фактором является возникновение значительных остаточных напряжений деформации при этом невелики.  [c.221]

Чистые металлы и эвтектические сплавы не имеют эффективного интервала кристаллизации они затвердевают практически при постоянной температуре. Однако горячие трещины образуются при сварке и этих материалов. Основной причиной их охрупчивания является локализация деформации в результате концентрации растягивающих напряжений по структурно несовершенным границам зерен. Экспериментальные трудности определения нижней границы температурного интервала хрупкости и деформаций металла в процессе его кристаллизации при сварке затрудняют расчетное определение возможности появления горячих трещин в реальных сварных соединениях. Для практической оценки склонности сварных соединений к образованию горячих трещин обычно используют результаты сравнительных испытаний, полученные при сварке специальных технологических образцов, которые изготовлены из материала свариваемой конструкции и имитируют ее соединения. Установленные для каждого такого образца размеры и технология сварки обеспечивают соединению условия, необходимые для образования горячих трещин. Стойкость сварных соединений алюминия и его сплавов против образования горячих трещин чаще всего определяют по результатам сварки технологических образцов  [c.77]

Размеры и положение швов также влияют на величину деформаций при сварке. Наибольшие деформации вызывают длинные швы, швы с большим сечением, а также швы, расположенные несимметрично относительно главных осей сечения свариваемого профиля (рис. 55). Чем сложнее форма детали, чем больше в ней различных швов, тем скорее можно ожидать появления деформаций и напряжений при сварке. При односторонней наплавке плоских деталей уменьшение глубины и площади проплавления основного металла резко уменьшает коробление изделия.  [c.126]


К основным физическим процессам при сварке плавлением относятся электрические, тепловые, механические процессы в источниках нагрева плавление основного и электродного (присадочного) металла, их перемешивание, формирование и кристаллизация сварочной ванны ввод и распространение тепла в свариваемом соединении, приводящее к изменению структуры металла в шве и зоне термического влияния и образованию собственных сварочных деформаций и напряжений.  [c.19]

При сварке основной металл нагревается в зоне плавления до температуры более высокой, чем температура металла, окружающего сварочную ванну и удаленного от нее. Неравномерный нагрев металла, вызванный.сваркой, приводит к появлению сжимающих сил в зоне металла, прилегающей ко шву, и растягивающих сил вдали от сварного шва. В результате происходит коробление сварного соединения. Кроме того, затвердевание и охлаждение металла шва приводят к его усадке и деформации свариваемого изделия. Структурные напряжения связаны с изменением размеров кристаллов и их взаимного расположения и сопровождаются изменением объема тела, вызывающим внутренние напряжения. Внутренние силы, возникающие в металле при сварке, могут быть достаточными, чтобы привести к образованию трещин в швах или рядо.м с ними.  [c.116]

Учебник охватывает все основные разделы курса. В нем рассматриваются вопросы общей теории сваривания, основы физической химии, сварочные источники тепла, а также некоторые вопросы тепловых и металлургических процессов при сварке, формирования структуры и свойств- металла сварных соединений, возникновения и развития сварочных деформаций и напряжений, технологической свариваемости металлов и сплавов.  [c.3]

При этом для перераспределения напряжений обеспечивается прогрев полос шириной около 80 мм примерно до 520 К специальными многопламенными горелками с линейным расположением сопел для пламени одновременно с двух сторон от шва на расстоянии от него 100—150 мм. По мере перемеш,ения горелок нагретые полосы заливаются водой для быстрого охлаждения и нераспространения нагрева на большую ширину. Вода подается через специальные каналы в горелке, позади сопел для пламени. При таком режиме в нагревавшихся зонах металла появляются остаточные пластические деформации, растягивающие шов и снимающие при этом имеющиеся остаточные напряжения растяжения в металле шва и околошовной зоны. Однако одновременно в основном металле в зоне нагрева и охлаждения параллельно швам возникают остаточные напряжения, равные, как правило, пределу текучести и распространенные в большей зоне, чем после сварки. В связи с тем, что такое перераспределение остаточных напряжений, снижая их в шве, создает по величине примерно такие же в двух зонах основного металла, оно целесообразно только в том случае, когда механические свойства металла шва и околошовной зоны ниже, чем свойства свариваемого металла. При современном состоянии сварки, когда в большинстве случаев обеспечивается необходимая прочность и надежность швов, мало отличающаяся от металла конструкции, метод термопластического перераспределения напряжений почти не применяется.  [c.239]

На величину деформаций и напряжений при сварке существенное влияние оказывает ряд факторов жесткость или размеры и конструкция соединяемых элементов реактивные силы, возникающие обычно вследствие ограничения деформаций свариваемых элементов активные силы от собственного веса изделия или от полезной нагрузки последовательность наложения швов режим сварки и число слоев температура подогрева различия в составе, теплофизических свойствах, характере и температурных интервалах фазовых превращений металла шва и основного металла и т. д. [28—30].  [c.21]

Соединение внахлестку является нежелательным, а в некоторых случаях, при толщине металла более 3 мм, — недопустимым из-за большого и неравномерного местного разогрева металла и большой величины возникающих в нем внутренних напряжений, деформаций и трещин в швах и в основном металле при достаточно большой жесткости конструкции. Сварку металла толщиной менее 3 мм, в особенности при незначительных размерах свариваемого изделия, нахлесточные соединения (фиг. 85, з) находят применение, например, в самолетных конструкциях при приварке усиливающих шайб в местах сопряжений отдельных узлов конструкций и т. д.  [c.190]


Форму разделки кромок при прямолинейном наклонном срезе кромок и их сборку под сварку характеризуют четыре основных конструктивных параметра (рис. 1.11, а - <)) зазор - Ь, притупление - с (нескошенная часть торца кромки), угол скоса кромки - р (острый угол между плоскостью скоса кромки и плоскостью торца) и угол разделки кромок -а (угол между скошенными кромками свариваемых частей), равный р или 2р. Разделка кромок обеспечивает доступ электрода и дуги в глубь соединения для полного проплавления кромок на всю их толщину. Так как форма разделки кромок определяет количество необходимого дополнительного металла для заполнения разделки, стремятся делать минимальную площадь разделки. Сварные соединения с Х-образной разделкой кромок (рис. 1.11, д) для двусторонней сварки имеют преимущества перед соединениями с V-образной разделкой кромок для односторонней сварки (рис. 1.11, г), так как при одной и той же толщине свариваемого металла будет ниже в 1,6. .. 1,7 раза объем наплавленного металла и расход сварочных материалов (электродов, электродной проволоки и флюса). В первом случае будет значительно выше производительность сварки, а также меньше деформации и напряжения в свариваемом изделии.  [c.16]

Свойства бронзы, в том числе ее свариваемость, определяются основными легирующими добавками. Газовая сварка оловянистых бронз затруднена из-за выгорания некоторых компонентов, особенно олова. Олово из состава бронзы выделяется при нагреве до температуры 500—600°С, которое при сгорании на поверхности ванны расплавленного металла образует пену, в результате чего шов получается пористым со сниженными механическими характеристиками. Бронза теряет вязкость и становится хрупкой при нагреве выше 500°С. Появление больших внутренних напряжений и возникновение трещин может произойти от неравномерного. нагрева изделий при сварке. Поэтому для понижения или полного устранения сварочных напряжений и деформаций при сварке изделий из литой бронзы необходим местный или общий подогрев до температуры 500—600°С. Не рекомендуется поворачивать и поднимать изделие в процессе сварки, так как в нагретом состоянии изделие может разрушиться. В связи с окислением олова в процессе сварки в присадочной проволоке олова долж1НО (быть на 1—2% больше, чем в основном металле. Наличие в составе проволоки раскислителей, например фосфора, улучшает свойства сварного шва. В качестве такого присадочного металла рекомендуется бронза Бр.ОФ 6,5—0,4.  [c.138]

Снижение внутренних деформаций и напряжений - один из путей предупреждения трещин. Для этого необходимо уменьшить реакцию основного металла на разофеваемые до высоких температур шов и 3. т. в. Следует уменьшить геометрическую жесткость свариваемых заготовок, исключить их закрепление при сварке, а также применить предварительный подофев для выравнивания температур по объему заготовки. Сварочные напряжения  [c.275]

Местное расплавление металла детали (основного и присадочного) вызывает изменение химического состава наплавленного слоя и микроструктуры детали в близлежащих слоях, т. е. в зоне теплового влияния, размеры которой зависят от вида, режима сварки и толщины свариваемого металла. Чем выше скорость сварки, тем меньше зона теплового влияния Так как при газовой аплавке интенсивность нагрева меньше, чем при наплавке в электрической дуге, то и зона теплового влияния будет больше из-за неравномерного нагрева деталей при аплавке возникают внутренние напряжения после сварки, которые очень снижают усталостную прочность и вызывают деформацию детали. Внутренние напряжения снимают при термической обработке детали.  [c.23]


Смотреть страницы где упоминается термин Основной металл, свариваемость, напряжения и деформации при сварке : [c.231]    [c.250]    [c.110]    [c.133]    [c.31]    [c.366]   
Смотреть главы в:

Технология электрической сварки металлов и сплавов плавлением  -> Основной металл, свариваемость, напряжения и деформации при сварке



ПОИСК



597 — Деформации и напряжения

Деформации и напряжения при сварке

Металлы деформация

Напряжения в металле

Свариваемость металлов

Сварка Свариваемость металлов

Сварка металла

см Свариваемость



© 2025 Mash-xxl.info Реклама на сайте