Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Палладий, платина, рутений

Легирование коррозионностойких сталей палладием, платиной, рутением, рением.  [c.123]

Легирование титана и его сплавов палладием, платиной, рутением Легирование Nb или сплавов Nb-Ta платиной  [c.123]

В качестве катодных легирующих присадок могут быть использованы различные электроположительные металлы, как палладий, платина, рутений и ряд других металлов платиновой группы, а в некоторых условиях даже и менее благородные металлы, как рений, медь, никель, молибден, вольфрам и др.  [c.19]


Как установил Н. Д. Томашов, введение в титан катодных добавок, таких как палладий, платина, рутений, рений и др., приводит к резкому уменьшению скорости коррозии в растворах серной, соляной и фосфорной кислот. Так, например, при содержании 0,2% Р(1 скорость коррозии титана в 5%-ном растворе НгЗО при температуре кипения уменьшается в 50 раз.  [c.142]

ПАЛЛАДИЙ, ПЛАТИНА, РУТЕНИЙ  [c.226]

Из растворов данного состава возможно получение покрытия толщиной до 60 мк. Для нанесения палладия на вышеуказанные металлы, а также на палладий, платину, рутений, серебро и сплавы с большим содержанием никеля или кобальта может быть рекомендован состав, моль/литр [99]  [c.196]

На воздухе наибольшая потеря массы происходит у осмия затем у рутения, иридия, платины, родия, палладия. В вакууме наиболее склонен к возгонке палладий, затем родий, платина, рутений, иридий, осмий. При нагревании с фосфором, мышьяком, серой, селеном, теллуром, углеродом платиновые металлы разрушаются.  [c.164]

Коррозионная стойкость металлов в атмосфере, равно как и в других коррозионных средах, нередко определяется их термодинамической стабильностью [17]. К металлам высокой термодинамической стабильности, которые не корродируют в большинстве природных сред, относятся металлы платиновой группы (рутений, осмий, родий, иридий, палладий, платина), золото и до некоторой степени — серебро. Большинство этих металлов используют главным образом в ювелирной промышленности или в качестве покрытий специального назначения.  [c.89]

К благородным металлам относятся серебро, золото, платина, палладий, родий, рутений, иридий, осмий (табл. 3—14). Они имеют высокую коррозионную устойчивость в атмосфере при температуре 20 °С. При повышенной температуре многие из них могут окисляться, но получаемые окислы нестойки и при дальнейшем повышении температуры разлагаются или улетучиваются. Большинство благородных металлов образуют между собой твердые растворы — серебро — золото, серебро — палладий, золото — палладий, родий — палладий, родий — платина, иридий — платина, палладий — платина, палладий — иридий.  [c.279]

К благородным металлам относятся золото, серебро и металлы платиновой группы—платина, иридий, родий, палладий, осмий, рутений. Основным свойством всех благородных металлов является их химическая устойчивость.  [c.233]

Вследствие способности к абсорбции газов платиновые металлы, главным образом, палладий, платина и рутений, применяют в качестве катализаторов при реакциях гидрогенизации и окисления. Каталитическая активность их увеличивается при использовании черни. Осмий также обладает высокой каталитической активностью, но осмиевые катализаторы легко отравляются.  [c.373]


Процесс плавки протекает в основном в восстановительном режиме, поэтому потери платиновых металлов в этом процессе определяются механическими потерями мелких корольков штейна, взвешенных в шлаковой фазе. Эти потери могут быть устранены флотацией шлаков с извлечением платиновых металлов в сульфидный концентрат, что, как было указано, применяется на заводах ЮАР. При этом извлечение палладия, платины, иридия, родия может достигать более 99,0 %. Несколько ниже извлечение осмия и рутения, которые могут в большей степени, чем другие платиновые металлы, растворяться в шлаке.  [c.391]

Легирование титана и его сплавов палладием, платиной или рутением  [c.20]

Для разрывных контактов применяются следующие материалы платина, палладий, радий, золото, серебро, воль фрам, молибден, никель, медь, медь-кадмий, платина-ро дий, платина-иридий, платина-рутений, платина-никель платина-вольфрам, палладий-иридий, палладий-серебро палладий-серебро-кобальт, палладий-медь, золото-серебро золото-никель, золото-цирконий, серебро-медь, серебро кадмий. Особую ценность представляют сплавы палладия с серебром и медные. Применение контактных материалов см. в табл. 6.9.  [c.278]

Легирование нержавеющих сталей небольшими добавками Си, Pd, Pt. Введение меди в низколегированные стали (повышение пассивации в атмосферных условиях). Легирование титана и его сплавов палладием, платиной или рутением. Легирование ниобия или его сплавов с танталом платиной. Легирование свинца и его сплавов палладием  [c.68]

Способ основан на восстановлении ионов металла на каталитически активной поверхности металлического или неметаллического электрода восстановителем, находящимся в растворе. Химическим способом могут быть восстановлены ионы никеля, кобальта, железа, хрома, кадмия, олова, палладия, платины, меди, серебра, золота, родия, рутения. Химическим осаждением можно получить помимо чистых металлов и сплавы металлов с неметаллическими компонентами, входящими в состав восстановителей углеродом, фосфором, бором, а также сплавы двух металлов с этими элементами.  [c.201]

В электротехнике, электронике и приборостроении платина, платиноиды и разные их сплавы употребляются при монтаже аппаратуры связи, для деталей астрономических приборов и электродов рентгеновских трубок. Термопары из платины и ее сплавов с родием пригодны для длительного измерения высоких температур возможные пределы этого расширяются с увеличением процента родия в сплавах, который менее летуч. Покрытия родием, имеющим высокую отражательную способность, важны для прожекторной техники, они не теряют свойств до 400 С. Весьма твердые сплавы осмия с иридием идут на изготовление точных измерительных инструментов — астрономических и мореходных. Замена платины платиноидами часто выгодна палладий и рутений дешевле платины.  [c.272]

Платина Иридий Осмий. Палладий Родий. Рутений Серебро Золото.  [c.216]

В качестве материала для изготовления фильер экструдеров вискозного волокна часто используются сплавы платина — золото, особенно сплав 30 Pt — 70 Au, в который для получения мелкозернистой структуры вводится также 0,5% Rh. Этот сплав допускает значительное упрочнение путем соответствующей термообработки. Отверстия проделывают при твердости материала около HV 120, а после окончательной термообработки твердость материала готовой фильеры составляет примерно HV 220. Такая высокая твердость делает металл стойким к царапанию и позволяет производить зеркальное полирование лицевой поверхности фильеры. Малый размер зерна материала обеспечивает в высокой степени круглую форму отверстий. Для изготовления фильер применяют также сплавы родий — платина, иридий — платина, иридий — родий — платина, рутений — платина и рутений — палладий.  [c.223]

Для нанесения покрытий из золота, серебра и металлов платиновой группы (платина, палладий, радий, рутений, осмий) на другие металлы наиболее широко используют методы механического плакирования и электролитического осаждения  [c.452]

Серебро Т антал Титан Золото Иридий Осмий Палладий Платина Родий Рутений  [c.53]


В переходной группе и в первых двух группах В более тяжелые металлы более благородны, чем легкие. Устойчивость платины, родия, палладия, золота и серебра есть внутреннее свойство этих металлов, в противоположность тому, что имеет место для многих металлов группы А , которые обязаны своей устойчивостью защитной пленке. Об особых причинах химической стойкости элементов переходной группы будет сказано дальше. Шесть наиболее тяжелых элементов переходной группы совершенно не изменяются во всех обычных типах атмосферы, хотя рутений и осмий имеют летучие окислы, дающие при нагревании на воздухе ядовитые пары, обладающие запахом. Окислы иридия и даже платины при очень высоких температурах также летучи (стр. 132). По отношению к большинству реагентов эти шесть металлов устойчивы и не выделяют водорода из кислот, однако палладий разрушается горячей концентрированной серной кислотой и до некоторой степени азотной кислотой, а платина разрушается царской водкой. Аткинсон сообщает, что платина-, палладий, родий, рутений и иридий растворяются на аноде в расплавленной смеси хлористых калия, лития и натрия при  [c.449]

Особый интерес представляет применение благородных металлов платиновой группы при так называемом катодном легировании сталей, разработанном группой ученых АН СССР. Сущность катодного легирования заключается в повышении эффективности катодных процессов в пассивирующихся системах, в результате чего потенциал системы смещается в сторону положительных значений и она переходит в пассивное состояние. В качестве катодных легирующих добавок применяют небольшие количества (0,1—0,5%) палладия, платины, рутения и др.  [c.149]

В качестве катодных присадок для повышения пассиви-руемости титана и его сплавов могут быть использованы различные электроположительные металлы (палладий, платина, рутений и ряд других металлов платиновой группы), а в некоторых условиях даже и менее благородные металлы — Re, Си, Ni, Мо, W и др.) Дальнейшее исследование возможности увеличения пассивируемости сплавов применением в качестве активных катодных центров некоторых интерметаллидов и таких соединений как карбиды, нитриды, силициды [2, 97] для повышения пассивации титана может привести также к интересным и важным результатам.  [c.126]

Этот эффект обеспечивает значительное противоизносное, противозадирное и антифрикционное действие, а также ускоряет приработку пар трения. Впервые эффект самопроизвольного образования полимерных пленок на поверхностях трения ( полимеров трения ) в смазочной среде был обнаружен в 1957 г. Хер-мансом и Эганом [13]. Ими было показано, что при активации трением под действием повышенной температуры, каталитического влияния свежеобнаженной поверхности металла и эмиссии поверхностью металла экзоэлектронов и других частиц происходит образование из молекул углеводородов смазочного материала активных радикалов (например, путем разрыва связи углерод - водород или углерод - углерод). При этом катализаторами образования полимерных пленок служат такие металлы, как палладий, платина, рутений, молибден, тантал и хром, в то время как золото, серебро, а также железо, медь, вольфрам и никель не оказывают заметного влияния на образование полимеров трения . Наиболее эффективны в этом случае углеводороды, обладающие ненасыщенными связями и неоднородностями структуры молекул, а также ароматические соединения. Затем происходит сшивка при трении до молекул с очень большой молекулярной массой и высаживание их на поверхностях трения.  [c.238]

Низкая коррозионная стойкость титана в кипящих растворах НС1 или H2SO4 (114 мм/год в Ю % НС1) повышается на три порядка в присутствии небольших количеств ионов или Fe (0,15 мм/год в кипящей 10 % НС1 с добавкой 0,02 моль/л Си " или Fe ) [8]. Присутствие небольшого, количества никеля как в среде, так и в виде легирующей добавки к титану повышает коррозионную стойкость. Показано, например, что титан пассивируется в кипящем 3 % растворе Na l, подкисленном до pH = 1, если металл легировать 0,1 % Ni или ввести в раствор 0,2 мг/л [9]. Наименьшим коррозионным разрушениям подвергается базисная плоскость гексагональной плотноупакованной решетки титана. Небольшие легирующие добавки палладия, платины или рутения также эффективно уменьшают скорость коррозии в кипящем Ю % растворе НС1 (2,5 мм/год для сплава с 0,1 % Pd см. рис. 24.1) [10, 11]. Если на поверхности титана присутствует палладий, скорость коррозии в кипящем 1т растворе H2SO4 уменьшается в 1000 раз 112], причем одинаково эффективно по-  [c.373]

Покрытия благородными металлами. К благородным металлам относятся золото, серебро, платина, палладий, родий, рутений, ослий.  [c.91]

Благородными (драгоценными) металлами (табл. I—3, рис. 1—5) называются металлы IB и VIII групп 5-го и 6-го периодов серебро, золото, палладий, платина, родий, иридий, рутений, осмий.  [c.275]

Нерастворимый остаток, полученный после экстракции царской водкой, плавят со свинцовым глетом и флюсами и купелируют образующийся прн этом свинцовый сплав. Полученный сплав драгоценных металлов разделяют затем путем обработки азотной кислотой, удаляющей большую часть палладия, платины и серебра. Нерастворимый остаток содержит родий, иридий и рутений (и очень небольшое количество осмия) в концентрированном виде. Эта группа металлов известна иногда как побочные металлы, и последующая переработка их составляет трудную часть процесса рафинирования платиновых металлов. Конечно, в этой части в опубликованных схемах рафинирования различия и новшества встречаются больше, чем в части выделения платины и палладия.  [c.479]

Иридий И серебро остаются в остатке. Фирма International Ni kel , с 1971 г. использует процесс извлечения и выделения золота с помощью экстракции [192]. Исходным материалом являются анодные шламы, образующиеся при рафинировании никеля и меди. Шламы содержат платину, палладий, родий, рутений, иридий и осмий, а также золото и серебро. Ниже указаны концентрации компонентов исходного материала, г/л Аи — (4—6) Pt — 25 Pd — 25 , Rh, Ru, Ir — небольшие количества Sn, Те, Sb, As, Bi, Zn, Pb, u, Ni, Fe — всего 20 концентрация H l составляет ЗМ, a общая концентрация хлорида — 6 М.  [c.216]


Основным спутником никеля в сульфидных рудах является медь, содержащаяся главным образом в халькопирите (СиРеЗг). Из-за высокого содержания меди эти руды называют медно-никелевыми. Кроме никеля и меди, в мед-но-никелевых рудах обязательно присутствуют кобальт, металлы платиновой группы (платина, палладий, родий,, рутений, осмий и иридий), золото, серебро, селен и теллур, а также сера и железо. Таким образом, сульфидные медно-никелевые руды являются полиметаллическим сырьем очень сложного химического состава. При их металлургической переработке извлекают 14 (включая серу) ценных компонентов.  [c.186]

Х15Н55М16В Палладий Платина Родий Рутений Свинец С1 Серебро  [c.14]

Никель Ниобий Олово Осмий Палладий Платина Полоний Празеодим Протактиний Радий Рений Родий Ртуть Рубидий Рутений Самарий Свинец обыкновенный Свинец тори-евый Свинец урановый Селен Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Титан Торий Тулий Углерод Уран Фосфор Фтор Хлор Хром Цезий Церий Цинк Цирконий Эманация Эрбий  [c.27]

К настоящему времени метод химического восстановления используют при осаждении никеля, кобальта, железа, палладия, платины, меди, золота, серебра, родия, рутения и некоторых сплавов на основе этих металлов. Легирующими компонентами этих сплазов являются как каталитически активные металлы, так и металлы, в индивидуальном состоянии неактивные, например, вольфрам, молибден, марганец.  [c.366]

Свинец Серебро Цннк Иридий Палладий Платина Родий Рутений Т антал  [c.65]

Неодим Неон Никель Ниобий Олово. Осмий. Палладий Платина Полоний Празеодим Протакти ний. . Радий. Радон Рений. Родий. Ртуть Рубидий Рутений Самарий Свинец, Селен. , Сера. . Серебро Скандий Строицлй Сурьма. Таллий, Тантал Теллур Тербий. Титан. Гор ИЙ. Тулий. Углсфод уран. . Фосфор Фтор. . Хлор. . Хром. . Цезий.  [c.271]

Однако даже если такие среды будут созданы, то за короткий промежуток времени пребывания отработавших газов в выпускной системе, особенно, когда температура их невысокая, указанные реакции не успевают протекать. Для ускорения этих реакций используют катализаторы. Наиболее эффективными являются катализаторы на основе благородных металлов — платины и палладия. Платина — универсальный катализатор, обеспечиваюищй быстрое протекание реакций окисления и восстановления. Палладий, как правило, используют для ускорения окислительных реакций. Для интенсификации восстановительных реакций применяют радий, рутений, окислы меди, марганца, ванадия, хрома и др. Активность этих катализаторов объясняется низкой прочностью связи кислород — металл. Однако их эффективность значительно ниже по сравнению с платиной и палладием, поэтому, несмотря на высокую стоимость, для нейтрализа-ции вредных веществ ДВС наиболее широко используют каталитические нейтрализаторы на основе благородных металлов. Катализатор наносят на поверхность носителя или пропитывают его. В качестве носителей используют керамические или изготовленные из тугоплавких окислов (например, окислов алюминия АЬОз) блоки или гранулы с развитой поверхностью.  [c.562]


Смотреть страницы где упоминается термин Палладий, платина, рутений : [c.41]    [c.374]    [c.218]    [c.21]    [c.46]    [c.486]    [c.124]    [c.418]    [c.267]    [c.36]   
Смотреть главы в:

Электролитические и химические покрытия  -> Палладий, платина, рутений



ПОИСК



Паллада

Палладий

Платина

Платина-рутений

Платинит

Рутений



© 2025 Mash-xxl.info Реклама на сайте