Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Использование потенциальных функций в теории упругости

В линейной теории упругости, напомним, распространен вариант полуобратного метода, в котором исходным этапом служит задание статически возможного, иначе говоря, удовлетворяющего уравнениям статики в объеме и на поверхности, напряженного состояния. Далее проверяется, что это состояние согласуется с уравнениями Бельтрами — Мичелла этим гарантируется, что линейный тензор деформации, вычисляемый по принятому тензору напряжений, допускает определение вектора перемещения и. Перенесение этого приема в нелинейную теорию затруднено тем, что обращение уравнения состояния — разыскание меры деформации по тензору напряжений из нелинейного уравнения состояния практически неосуществимо (И, 8) и неоднозначно. Аналог уравнений Бельтрами —Мичелла в нелинейной теории может быть использован лишь в исключительных случаях ( 17). Поэтому вторым вариантом полуобратного метода здесь может служить исходное задание меры деформации, удовлетворяющее условиям обращения в нуль тензора Риччи (П1.10.21). По этой мере и по уравнению состояния составляется тензор напряжений. Он должен быть статически возможным его дивергенция должна быть нулем, если не учитываются массовые силы, а по его произведению на вектор нормали определяются поверхностные силы. Конечно, нет оснований ожидать, что такая процедура не потребует при выполнении уравнений статики в объеме конкретизации задания коэффициентов определяющего уравнения, как функций инвариантов меры деформаций (скажем, коэффициентов фг(/1, 2, /з) в (4.3.4)). Значит и формы представления поверхностных сил зависят от выражений этих коэффициентов, иначе говоря, их нельзя представить в единой записи, независящей от того, какой принят закон зависимости удельной потенциальной энергии э(/,, /2, /3) от ее аргументов.  [c.135]


В теории конечных деформаций упругого тела принцип виртуальной работы приводит к установлению принципа стационарности потенциальной энергии при условии, что существуют функция энергии деформации материала тела и функции потенциалов внешних сил. Как только принцип стационарности потенциальной энергии установлен, он может быть обобщен с использованием множителей Лагранжа.  [c.19]

Как было показано ранее, задачу теории упругости для малых перемещений можно сформулировать вариационными методами, предположив существование трех функций Л, Ф, Y. Точные дифференциальные уравнения и граничные условия тогда получаются из условий стационарности общей потенциальной энергии или родственных функционалов. Однако одно из основных преимуществ вариационного исчисления — это его применимость для получения приближенных решений. Так называемый метод Релея — Ритца — один из лучших способов получения приближенных решений путем использования вариационното метода [2, 3, 12—17]. Проиллюстрируем метод Релея—Ритца двумя примерами.  [c.61]

Исследование деформации упругих систем, как известно, заключается в составлении дифе-ренциального уравнения, характеризующего рассматриваемую деформацию, и затем в разыскании решения этого уравнения, удовлетворяющего известным граничным условиям рассматриваемой задачи. В то время как составление диференциальных ур-ий производится без особых затруднений помощью приложения к частным случаям общих выводов теории упругости, решение этих уравнений часто оказывается сопряженным с затруднениями чисто математич. характера, к-рые или не могут быть разрешены или приводят к результатам, мало пригодным для практич. использования вследствие слон -ности или отсутствия необходимой наглядности. Решение таким путем новых задач, могущих встретиться в инженерной практике, далеко выходя из рамок обычных расчетов и принимая характер научно-исследовательской работы, оказывается обычно невыполнимым в обстановке практической деятельности инженера. Применение метода потенциальной энергии, как известно, дает возможность более просто получить приближенное решение задачи, избегнув необходимости интегрирования соответствующего ей диференциального уравнения. Однако те же результаты, но гораздо проще, можно получить, и не прибегая к методу потенциальной энергии, а применив метод непосредственного интегрирования диференциального ур-ия помощью бесконечных рядов. Сущность этого метода заключается в том, что заранее задаемся подходящим видом искомой функции, входящей в диференциальное ур-ие рассматриваемой задачи, после чего, подставляя ее в это ур-ие, определяем входящие в нее неизвестные параметры. Под подходящим видом ф-ии в данном случае разумеется такой вид ее, при к-ром полностью удовлетворяются вытекающие для нее из условий задачи граничные условия и к-рый по возможности точно отвечает действительному виду этой ф-ии чем ближе к действительности окажется выбранный вид подходящей ф-ии, тем ббльшую точность будет иметь полученное решение. Т. к. любая из интересующих нас ф-ий м. б. представлена с любой точностью соответствующим тригонометрич. рядом Фурье, то, задаваясь подходящей ф-ией в виде такого ряда, будем получать в таком же общем виде и искомые решения задачи, к-рые затем м. б. вычислены с любой степенью точности. Получающееся таким путем общее решение очевидно представляет собой выраженную в виде ряда Фурье ф-ию, отве-  [c.97]



Смотреть главы в:

Классическая теория упругости  -> Использование потенциальных функций в теории упругости



ПОИСК



Потенциальная теория

Теория упругости

Теория функция

Упругость Теория — см Теория упругости

Функция потенциальная



© 2025 Mash-xxl.info Реклама на сайте