Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Техника интерферометрии

Ну и, конечно, до сих пор не снят вопрос об объемном кино и объемном телевидении. Но об этом в отдельной главе. А теперь перечислим основные направления применения голографии в технике Интерферометрия Измерение вибрации сложных поверхностей  [c.62]

ИНТЕРФЕРЕНЦИЯ СВЕТА И ТЕХНИКА ИНТЕРФЕРОМЕТРИИ  [c.102]

В последнее десятилетие в нашей стране был опубликован ряд монографий, посвященных голографии, голографической интерферометрии и лазерной технике. Однако эта литература рассчитана на специалистов, научных работников, студентов старших курсов вузов и аспирантов.  [c.3]


Возможности формирования и измерения волн напряжений в композиционных материалах, в принципе, определяются уровнем техники экспериментальных исследований соответствующих явлений в твердых телах. Для образования волн напряжений используют пневматические пушки, заряды взрывчатого вещества, ударные плиты, ударные трубы и пьезоэлектрические ультразвуковые генераторы, а для их измерения — тензодатчики, пьезоэлектрические кристаллы, емкостные датчики, оптические интерферометры, методы голографии и фотоупругости. Экспериментальные исследования, не столь обширные как теоретические, тем не менее обеспечивают устойчивый поток информации, необходимой для проверки математических моделей. Результаты экспериментальных исследований скорости распространения волн, рассеяния  [c.302]

Метод громоздок, а обработка трудоемка и плохо поддается автоматизации. Однако как лабораторный метод он в ряде случаев имеет определенные преимущества по точности и экономичности перед голографией, лазерной интерферометрией, фотометрией, применением телевизионной техники и позволяет изучать такие характеристики ПР, которые затруднительно исследовать другими методами.  [c.82]

Лазерные интерферометры позволяют эффективно решать задачи контрольно-измерительной техники на производстве, такие, как обеспечение точного контроля и проверки средств, воспроизводящих меры длины, например штриховых шкал, контроля перемещений в процессе позиционирования, оценки точности подачи в металлообрабатывающих станках, коррекции температурной погрешности в процессе работы станка, определения толщины и овальности деталей и т. д. [167]. Указанные измерения могут осуществляться как в статическом, так и в динамическом режиме.  [c.246]

В машиностроительной промышленности постоянно повышаются требования к точности. В некоторых случаях допуски так малы, что контроль изделий традиционными методами становится чрезвычайно трудным или вовсе невозможным. Лазерная техника оказалась способной выполнять и эту задачу. Так, например, лазерные интерферометры, которыми оснащены некоторые координатно-измерительные машины, обеспечивают контроль перемещений рабочих органов с точностью до 0,01 мкм. При этом сигнал с интерферометра преобразуется в цифровые показания, что значительно сокращает время на проведение контрольных замеров и в комплексе с ЭВМ создает условия для полной автоматизации всего процесса. Промышленность выпускает также лазерные приборы для контроля параметров шероховатости обработанных поверхностей и выявления мельчайших поверхностных дефектов (раковин, царапин и т. п.). Можно привести еще и другие примеры эффективного использования лазера. Однако это лишь начало широкого применения этого замечательного изобретения, открывшего новые перспективы ускорения технического прогресса. Лазерный луч настойчиво входит в технологию машиностроения.  [c.49]


Весьма перспективным является использование лазеров в многокоординатных устройствах. Лазерные интерферометры и цифровая техника сделали доступными контроль крупногабаритных изделий по отклонениям размера, формы и расположения по новым методам оценки (см. гл. 4).  [c.417]

Изобретение оптической голографии [25, 26, 133—136, 174—177] сыграло революционизирующую роль в развитии науки и техники. На стыке радиотехники, техники связи и оптики родился поток новых идей, методов, технических средств записи, хранения, обработки, воспроизведения информации. Современная голография — это радио и звуковидение [2, 4, 9, 60, 140], голографическая интерферометрия и неразрушающий контроль [18, 56], оптическая обработка сигналов [1, 24, 55, 59], оптическое моделирование, контроль и коррекция излучающих систем [8, 9], изобразительная голография [54, 91].  [c.3]

Для измерения фаз применяется техника, основанная на анализе динамических интерферограмм. Схема экспериментальной установки, реализующей этот метод, изображена на рис. 6.34. Исследуемый импульс вводится в интерферометр Маха — Цандера, в одно из плеч которого помещен узкополосный спектральный фильтр (эталон Фабри — Перо). Ширина полосы пропускания фильтра выбрана меньше обратной длительности импульса, так что он играет роль узкополосного фильтра, формирующего опорный импульс. Интерференция опорного импульса с исследуемым, распространяющимся по другому плечу  [c.283]

Следует заметить, что разделение голографии как направления на отдельные ее составные части еще не установилось в литературе, и разные авторы книг и составители сборников по голографии по-разному осуществляют разбивку материала по главам. Тем не менее большинство авторов приводит следующие разделы голографии теоретические основы голографии как метода записи и восстановления волнового фронта, типизация голограмм и схем голографирования, особенности записи голограмм, техника и аппаратура голографирования, использование голографических методов в различных областях науки и техники. Некоторые части этих разделов выросли в последнее время в самостоятельные научные направления к ним относятся запись в трехмерных средах, динамическая голография и обращение волновых фронтов, голографическая интерферометрия и некоторые другие.  [c.6]

Использование всего окна прозрачности ПСК 0,4—6,0 мкм в технике ВОЛС и управляюще-коммутирующих интегрально-оптических устройств. Созданы интерферометры Фабри—Перо с полевым управлением, а также эффективные модуляторы видимого-и ИК-Диапазонов, в которых на ,=5,56 мкм (СО-лазер ЛГН-706) рассеяние света на доменах и порах снижено в 10 —10 раз.  [c.212]

Изобретенный в 1897 г. многолучевой интерферометр Фабри-Перо в настоящее время является одним из самых распространенных спектральных приборов. Трудно найти область физического эксперимента, в которой не использовались бы те или иные методы и Приборы многолучевой интерференционной техники.  [c.5]

Интерферометры с боковым входом лучей не получили распространения в технике исследования оптических неоднородностей, а используются преимущественно как интерференционные спектроскопы высокой разрешающей силы.  [c.11]

Для того чтобы получить мощное когерентное излучение, необходимо добиться одновременного и согасованного по фазе излучения многими атомами некоторой среды, которая получила название активной среды. В технике интерферометрии наиболее распространенными являются газовые лазеры, в которых активная среда, генерирующая излучение, представляет собой газ или смесь газов.  [c.31]

Единство требований. В метрологическом и технико-экономическом аспектах единые условия формально обеспечиваются выбором единых номиналов нормальных значений влияющих факторов. Требования к внешним условиям воспроизведения единицы на эталоне установлены соответствующими спецификациями. На эталоне длины предъявляются жесткие требования к отклонению температуры (менее 0,01 °С) и к уровню действующих вибраций (при частоте 1. .. 10 Гц амплитуда менее 0,1 мкм). При аттестации образцовых мер длины первого разряда на интерферометре Кестерса в результат измерений вводятся поправки на температуру, влажность, давление. Нормальная область в этом случае по температуре не превышает 0,1 °С, по относительной влажности —1% и по атмосферному давлению — 133 Па. Для концевых мер второго и третьего разрядов, поверяемых на контактных интерферометрах, оптиметрах, оптика-торах сравнительным методом обычно вводится только температурная поправка. Необходимые поправки вводятся и при поверке штриховых мер. При нормальных условиях соотношения допускаемых пределов погрешностей от действия влияющих величин Ад. у должны соответствовать запасу точности 2. .. 5. Отсюда выявляются требования к условиям реализации поверочной схемы при бин = 1 для мер низшего разряда. Если при поверке мер 5-го разряда обеспечивались условия, соответствующие воспроизведению мер 4-го разряда, то бин проявится при поверке мер установочных и рабочих средств измерений.  [c.42]


Особое разви1ие получает голографическая интерферометрия. Голографический метод позволяет записать на фотоэмульсию своеобразную картину волнового поля, которую называют голограммой. Такая запись стала практически возможной с использованием лазера. Голографическая интерферометрия значительно расширяет область интерферометрических измерений и является одним из очень перспективных направлений развития техники линейных измерений.  [c.417]

В последнее время в связи с развитием лазерной техники разрабатываются методы измерения полей деформаций сложных форм деталей на основе голографического эффекта — способа получения пространственных объектов с использованием когерентногр освещения [11]. Исходной для анализа полей деформаций является интерференционная картина, характеризующая деформации объекта (детали) за время между двумя экспозициями и получаемая при наложении друг на друга голограмм с детали. Метод голографической интерферометрии широко применяют для измерения перемещений и деформаций в элементах конструкций (балок, пластин, лопаток, оболочек и пр.) под действием статических и динамических нагрузок, а также вследствие возникновения нестационарных температурных полей.  [c.172]

Современный прогресс экспериментальной оптики волновых пакетов, распространяющихся в диспергирующих средах, целиком обязан достижениям, лазерной физики, связанным с разработкой техники синхронизации мод лазеров, методов быстрой фазовой модуляции света, методов динамической интерферометрии и интерферометрии интенсивности. Вместе с тем следует сказать, что дисперсионные эффекты, сопровождающие распространение коротких волновых пакетов, в принципе, могут быть исследованы и с помощью традиционных иела-зерных источников света, являющихся по своей сути генераторами оптического шума с временем корреляции пико- и фемтосекундного масштаба.  [c.17]

Для получения информации о рельефе поверхности используются различного вида щуповые приборы (профилометры, профилографы), оптические интерферометры, туннельные и сканирующие атомно-силовые микроскопы и т. д. Они позволяют с той или иной степенью точности воссоздать микрорельеф поверхности на заданном ее элементе, а также определить некоторые её характеристики (осреднённый высотный и шаговый параметры, средний наклон и радиус кривизны в вершине неровности, среднее количество неровностей на единицу площади и т.д.). Развитие измерительной техники приводит к изменению представлений о топографии, что стимулирует возникновение новых математических моделей, используемых для описания топографии поверхности. С другой стороны, при создании приборов для исследования топографии в конструкцию и программное обеспечение закладывается возможность измерения и расчёта характеристик, наиболее широко используемых при моделировании. Обзор экспериментальных методов исследования топографии поверхностей содержится в [59, 235].  [c.11]

Во втором томе настоящей книги рассматриваются главным образом различные применения голографии. Голографические запоминающие устройства для цифровой вычислительной техники, получение голографических двумерных и трехмерых дисплеев, голографическая интерферометрия, оптическая обработка информации и распознавание образов, голографическая микроскопия, создание голографических оптических элементов, спектроскопия, голографическая запись контуров объектов, размножение изображений, получение портретов голографическими средствами и, наконец, голографическая фотограмметрия — таков общий круг областей применения голографии, который подробно рассмотрен в гл. 10.  [c.8]

Голография как метод восстановления волнового фронта была предложена Габором около сорока лет назад [1]. С момента ее появления широкое развитие получили как теоретические основы, так и сфера ее применения в различных областях науки I техники. Пути развития голографии до современного масштаба были не гладкими. Были преодолены многие технические трудности, разработаны и применены новые, основанные на принципах голографии, методы анализа и контроля явлений и объектов. Второй этап бурного развития, создания основы современной голографии (начало 60-х годов) связан с появлением лазеров и разработанной Э. Лейтом и Ю. Упатниексом внеосевой схемы записи голограммы [2], а также открытием Ю. Н. Де-нисюком трехмерной голографии [3]. Результаты исследований в области голографии огромны и многообразны. Наиболее важные из них — создание голографических корреляционных систем с использованием пространственных голографических фильтров предложенных Вандер Люгтом [4] для обработки изображений и метод голографической интерферометрии [5], с помощью ко торого можно сравнивать явления, зарегистрированные в раз личные моменты времени, — достижение немыслимое до откры тия голографической интерферометрии.  [c.3]

После публикации в 1964 г. работ Лейта и Упатниекса в голографии произошел резкий скачок. Она стала находить все новые и новые области применения. В короткое время были усовершенствованы принципы голографической экспериментальной техники, получены цветные голограммы, создана методика самого важного применения голографии — голографической интерферометрии, разработаны научные основы голографии. Все это лишь простая констатация фактов. Не менее важны эксперименты сотен лабораторий, освоивших технику голографии. От них мы вправе ожидать новых идей и дальнейших усовершенствований в этой области.  [c.21]

Книга посвящена описанию схем, конструкций и методик применения многолучевых интерферометров типа Фабри-Перо для изучения процессон и явлений r прозрачных средах, рас положенных между зеркалами интерферометра. Рассмотрены различные схемы многолучевых интерферометров, основные типы источников света, способы и устройства (монохроматоры) для получения узких спектральных линий, конструкции интерферометров, способы точной юстировки и устройства для их реализации, вопросы техники обработки интерферограмм и способы их расшифровки, методы регистрации инте[ ревциошюй кар-  [c.2]


Наряду с широко известным лримепецием многолучевой интер( ренциониой техники для спектроскопии высокой разрешающей силы и метрологии в данной кгшге рассматривается специфика применения многолучевого интерферометра как прибора для количественного исследования прозрачных сред, помещенных между его зеркалами.  [c.2]

Однако целый ряд экспериментальных задач связан с необходимостью регистрации весьма малых изменений световой волны. Прошедшей через исследуемый объект (например, изучение свойств газов при низком давлении, определение толщины и сдвига фазы в тонких пленках и т. д.). Чувствительность измерений большинства иитерферометрических приборов оказывается недостаточной для обнаружения и измерения малых разностей хода луча, поэтому для развития интерференционной техники характерна тенденция к повышению точности и чувствительности измерений и поискам новых схем и методик исследования. Одним из наиболее эффективных и перспективных иитерферометрических методов является метод многолучевой интерферометрии.  [c.3]

Автор надеется, что предлагашая книга раскроет большие возможности многолучевого интерферометра как прибора для исследования прозрачных сред и поможет дальнейшему развитию и совершенствованию многолучевой интерференционной техники.  [c.4]

В последние годы многолучевые интерферометры все чаще начинают применяться как высокочувствительные индикаторы изменений параметров прозрачной среды, расположенной между зеркалами, Это объясняется тем. что распространенные в экспериментальной технике двухлучевые интерферометры в ряде задач оказываются недостаточно эффективными для точных измерений малых разностей хода, вносимых исследуемыми оптическими неод иородностями. Кроме этого, сравнительно простое конструктивное устройство многолучевых интерферометров делает их использование весьма целесообразным и при некоторых исследованиях, не требующих высокой чувствительности.  [c.8]


Смотреть страницы где упоминается термин Техника интерферометрии : [c.167]    [c.374]    [c.520]    [c.107]    [c.170]    [c.175]    [c.446]    [c.390]    [c.128]    [c.133]    [c.211]    [c.15]    [c.231]    [c.438]    [c.4]    [c.134]    [c.224]    [c.324]    [c.326]   
Смотреть главы в:

Прикладная физическая оптика  -> Техника интерферометрии



ПОИСК



Интерференция света и техника интерферометрии

Интерферометр

Интерферометрия



© 2025 Mash-xxl.info Реклама на сайте