Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Геометрический метод исследования устойчивости равновесия

Рассмотрим еще один геометрический метод исследования устойчивости равновесия, не связанный с построением круга перегибов, а основанный на непосредственном исследовании траектории центра тяжести С и его высоты.  [c.503]

Мы рассмотрели в теории и проиллюстрировали на нескольких примерах аналитический метод исследования устойчивости равновесия однако в некоторых частных случаях можно применить и геометрический метод решения этой задачи, опирающийся, как это ни странно, на кинематику он рассмотрен, например, в курсе Аналитическая статика Э. Раута (Р], стр. 239—243) предлагаем читателю внимательно рассмотреть аналитический метод исследования устойчивости равновесия, примененный при решении примеров №№ 136—138 учебника, и сравнить его с геометрическим методом решения тех же задач, который рассмотрен в добавлении III к гл. XV.  [c.440]


Одновременно с разработкой и совершенствованием аналитических и геометрических методов исследования движений материальных частиц и твердых тел в механике под влиянием запросов практики возникает и интенсивно развивается целый ряд новых областей и направлений, таких как механика жидкостей и газов (гидромеханика, аэромеханика, газовая динамика), механика упруго и пластически деформируемых тел (теория упругости и теория пластичности), общая теория устойчивости равновесия и движения механических систем, механика тел переменной массы и др.  [c.14]

Исследование свойств функционала потенциальной энергии можно заменить систематическим рассмотрением смены форм равновесия при изменении параметров системы. Соображения, близкие к известной теории бифуркаций А. Пуанкаре (1884 г.), приводят к статическому методу в теории устойчивости упругих систем. Этот метод позволяет свести исследование устойчивости к отысканию точек разветвления и предельных точек. В окрестности точки разветвления наряду с исследуемой формой равновесия сущ ествуют некоторые смежные формы. При переходе через эту точку может происходить потеря устойчивости по типу разветвления форм равновесия. Переходу через предельную точку соответствует скачкообразный переход от одной формы равновесия к другой. Анализ типов предельных точек и смен равновесных состояний упругих систем можно найти в работах Г. Ю. Джанелидзе (1955), И. И. Гольденблата (1965) и др. Основную трудность в применении метода бифуркаций упругих систем составляет выбор параметров, характеризуюш их состояние системы. Строго говоря, наличие точек бифуркации не является ни необходимым, ни достаточным условием смены устойчивости. Достоверность выводов, основанных на бифуркационных соображениях, можно повысить, если увеличить число параметров. Но при этом утрачивается главное преимущество бифуркационного метода — геометрическая наглядность.  [c.336]

Приведенные выше зависимости относятся к линейной теории изгиба пластин. Как показано в следующем параграфе, используя эти зависимости, можно получить линеаризованное уравнение, дающее возможность найти точки бифуркации начального неискривленно-го состояния равновесия пластины и определить изгибные формы равновесия пластины в окрестностях точек бифуркации. Но этих зависимостей недостаточно для того, чтобы исследовать поведение пластины в закритической области при конечных поперечных прогибах. Недостаточно их и для исследования устойчивости пластин энергетическим методом. Для этих целей кроме приведенных линейных зависимостей необходимо использовать геометрически нелинейные соотношения теории гибких пластин. Выведем эти соотношения.  [c.140]


Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Смотреть главы в:

Теоретическая механика Очерки об основных положениях  -> Геометрический метод исследования устойчивости равновесия



ПОИСК



Метод равновесия

Методы геометрического

Методы исследования

Равновесие устойчивое

Устойчивости исследование, метод

Устойчивости исследование, метод устойчивости

Устойчивость равновесия

Устойчивость — Исследование



© 2025 Mash-xxl.info Реклама на сайте