Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеры расчета тонкостенных оболочек

Примеры расчета тонкостенных оболочек  [c.77]

Приведем пример расчета тонкостенной оболочки прямоугольного профиля с прямолинейной осью X, перпендикулярной к ее торцам (типа крыла самолета) (рис. 12). Будем считать, что поперечное сечение обладает геометрическим подобием и изменяется по закону X  [c.85]

Теория оболочек — раздел механики сплошной среды. Она разрабатывает методы расчета тонкостенных оболочек, которые широко используются в современных инженерных сооружениях и машиностроении. Типичными примерами оболочек могут служить стены и разного рода перекрытия, обшивки судов, фюзеляжей и крыльев самолетов, корпуса подводных лодок и т. п. Можно различать оболочки упругие и неупругие. Это зависит не только от материала оболочки, но главным образом от характера распределения и величины внешней нагрузки, а также от вида внешних кинематических (геометрических) связей. Если внешняя нагрузка распределена кусочно-непрерывно и не превосходит некоторую характерную критическую нагрузку, то можно рассматривать оболочку как упругую. В дальнейшем, говоря об упругих оболочках, будем предполагать,  [c.267]


В учебнике освещены основные вопросы сопротивления материалов, отражающие современный уровень науки и техники. Достаточно подробно изложены общие методы определения перемещении и метод сил, вопросы упругих колебаний, расчеты при действии повтор ю-переменных и ударных нагрузок. Приведены элементы теории тонкостенных оболочек, дано большое количество детально разобранных примеров. Обновлен и дополнен материал по методам расчетов. Дополнены также справочные данные.  [c.2]

В третьем издании книги почти все главы существенно переработаны и дополнены новыми материками. Введены новые разделы расчет стержневых плоских и пространственных систем расчет на подвижную нагрузку расчет коленчатого вала расчеты с учетом пластических деформаций пластинки и оболочки тонкостенные резервуары. Включены новые методы определения перемещений, расчет статически неопределимых систем по методу перемещений. Увеличено число примеров расчета. Приведены данные по международной системе единиц СИ.  [c.9]

Всякую сколько-нибудь сложную практическую задачу удается довести до окончательного результата только с помощью целого ряда дополнительных упрощающих допущений. Постановку и решение типичных задач при небольшом числе четко сформулированных дополнительных упрощающих допущений (гипотез) обычно относят к прикладной теории упругости. Например, в задачах расчета тонкостенных конструкций, схематизируемых набором оболочек и пластин, чрезвычайно важную роль играют гипотезы Кирхгофа—Лява именно на этих гипотезах построены классические теории пластин и оболочек. Основная цель настоящей главы — на простых примерах познакомить читателя с гипотезами Кирхгофа—Лява, используемыми в большинстве остальных разделов книги. Кроме того, в этой главе рассмотрена плоская задача теории упругости и принцип Сен-Венана.  [c.34]

В основе технической теории пластин и оболочек, используемой при расчете тонкостенных элементов конструкций, лежат два важных упрощающих допущения — гипотезы Кирхгофа. С этими допущениями мы познакомимся на примере задачи об осесимметричном изгибе круглой пластины постоянной толщины — одной из самых простых задач теории пластин.  [c.53]

В третьей части (главы 7, 8) рассматривается приложение метода конечных элементов к расчету характерных для летательных аппаратов конструктивных элементов — пластин, оболочек и тонкостенных подкрепленных систем типа фюзеляжа или крыла самолета. Основное внимание уделено здесь описанию подходящих конечных элементов для расчета тех или иных конструкций их применение иллюстрируется примерами расчета.  [c.7]


При расчете двумерных и трехмерных конструкций, а также стержней при комбинированном действии силовых факторов применение методов линейного программирования возможно лишь при кусочно-линейной аппроксимации поверхностей текучести. Соответствующие методы расчета применительно к задачам приспособляемости были развиты сравнительно недавно. Общие вопросы, связанные с их применением, рассматривались в работах [10, 22, 24, 104, 164, 181]. Как и при расчетах одномерных стержневых систем, задачи, полученные на основе статической и кинематической теорем, образуют двойственную пару задач математического программирования [72, 109]. Конкретные примеры расчета осесимметричных пластин и оболочек методами линейного программирования даны в работах [10, 22, 66]. Здесь для получения дискретной модели конструкции использовались конечные суммы, рассматривались также вопросы точности вычислений. Расчету тонкостенных сосудов посвящены работы [126, 131], в первой из них (в отличие от [22, 66]) распределение остаточных напряжений было принято пропорциональным двум параметрам.  [c.38]

Подобных примеров можно привести очень много. Обобщая сказанное, следует отметить, что наиболее ярко явление потери устойчивости проявляется в легких тонкостенных конструкциях в сжатых стержнях, оболочках и тонких стенках. Поэтому при проектировании подобных конструкций одновременно с расчетом на прочность проводят и расчет на устойчивость как отдельных узлов, так и системы в целом.  [c.507]

Для увеличения изгибной жесткости тонкостенных элементов конструкций широко используют трехслойные пластины, панели и оболочки. В них два несущих тонких слоя из высокопрочного и жесткого материала (металл, стеклопластик, боро- или углепластик и т. д.) разделены толстым слоем значительно более легкого и менее прочного заполнителя (пенопласт, соты, гофры и т. д.). Внешние нагрузки воспринимаются в основном за счет напряжений в несущих высокопрочных слоях. Роль заполнителя сводится к обеспечению совместной работы всего пакета при поперечном изгибе. Основные особенности расчета на устойчивость таких элементов конструкций выявляются при рассмотрении простейшего примера определения критических нагрузок сжатого трехслойного стержня.  [c.113]

Отметим, что в зависимости от геометрической формы тонкостенных оболочек, параметров навиваемого бандажа, а также условий нагружения конструкций показатель двухосности напряженного состояния в стенке оболочки и = 02 /О] может варьироваться в широких пределах. В качестве примера на рис. 2.1 показаны некоторые частные сл> -чаи нафужсния оболочек различных типов и приведены соответствующие им зна-чения параметра двухосности нафужения стенки оболочки п, определенные на основе расчета напряжений в оболочковых конструкциях/20, 21/.  [c.71]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]


Еще больщих значений разрушающего внутреннего давления можно достичь в трансверсально изотропных цилиндрах со звездной укладкой арматуры, поскольку, как показывают расчеты, в этом случае обеспечивается максимальная прочность при поперечном сжатии. Подчеркнем на примере приведенных методов различие в стратегии управления несущей способностью тонкостенных и толстостенных изделий с точки зрения традиционного приема оптимизации тонкостенных оболочек указанные методы выглядят бессмысленными — ведь арматура забирается из направления действия одного из главны напряжений и перераспределяется в направлении, где нет главных напряжений. Тем не менее эти приемы позволяют поднять допустимый уровень внутреннего давления в несколько раз.  [c.484]

Так как сечение тонкостенных пространственных конструкций имеет небольшое армирование, то для ориентировочных расчетов в первом приближении можно принять х—0,55 ho. Полное исчерпание несущей способности внецентренно сжатых (растянутых) элементов может иметь место только в том случае, если они взаимодействуют с более прочными окаймляющими их конструкциями. Например, несущая способность полки оболочки может быть исчерпана только в том случае, если она опирается на достаточно прочный контур, который при воздействии на него предельных для сечений полки нормальных сил распора N p и изгибающих моментов Л1пр не разрушится. Если контур не обладает такой прочностью, то возникновению в плите сил iVnp и моментов УИпр будет предшествовать его разрушение. По-видимому, если отвлечься от несовпадения несущих способностей одной и той же конструкции при различных схемах излома, то в оптимально запроектированной с точки зрения прочности конструкции разрушение различных элементов должно наступать при одной и той же нагрузке, т. е. элементы должны быть равнопрочными. В соответствии со сказанным выше, если прочность криволинейного бруса ниже прочности балок, на которые он опирается, то при возникновении в брусе предельных нормальных сил Л/ р и моментов УИпр балки не разрушатся (рис. 3.2). Наоборот, если балки в рассматриваемом примере не обладают достаточной прочностью, то при возникновении в них предельных моментов и их разрушении несущая способность бруса не будет исчерпана и действующие в нем усилия будут меньше предельных. При равнопрочности элементов момент разрушения балок должен совпадать с моментом исчерпания несущей способности бруса. Оценка несущей способности конструкций с учетом взаимного влияния прочности отдельных элементов является, несомненно, приближенной. Более точных результатов можно ожидать при учете не только взаимного влияния прочностей отдельных элементов, но и при учете влияния их деформативности. Если балку подкреплять подвесками с одним и тем же сечением (одной и той же прочностью), но с разной длиной, то очевидно, что несущая способность конструкции при увеличении длины подвески до некоторой оптимальной величины может увеличиваться (рис. 3.2, д). Таким образом, при оценке несущей способности конструкции  [c.176]

В качестве примера опишем процесс автоматизированного синтеза и определения НДС сосуда высокого давления, продольное сечение которого показано на рис. 24.1. Сосуд представляет собой тороидальную тонкостенную конструкцию, являющуюся комбинацией оболочек и шпангоутов. Нежесткие соединения элементов конструкции описываются точечными связями. Материал сосуда— упругий, конструкция нагружена внутренним давлением. Таким образом, расчет рассматриваемой конструкции сводится к решению задачи определения параметров НДС упругой оболочечной конструкции при ее осесимметричном нагружении.  [c.386]


Смотреть главы в:

Сопротивление материалов  -> Примеры расчета тонкостенных оболочек



ПОИСК



Оболочка Расчет

Оболочки тонкостенные

Оболочки тонкостенные — Расчет

Пример расчета



© 2025 Mash-xxl.info Реклама на сайте