Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Листовая Вязкость ударная

Листовая сталь бессемеровская — Вязкость ударная при отрицательных температурах 239 — Механические свойства 235, 236  [c.482]

Текстолит. Этот пластик аналогичен гетинаксу, но изготовляется из пропитанной ткани. Свойства различных марок листового электротехнического текстолита определяются ГОСТ 2910—74. Свойства текстолита на основе хлопчатобумажной ткани (например, марка Б, см. табл. 6-5) в общем близки к свойствам гетинакса текстолит имеет повышенную удельную ударную вязкость, стойкость к истиранию и сопротивление раскалыванию (при вдавливании клина в торец доски). Текстолит в пять-шесть раз дороже гетинакса, так как стоимость ткани значительно выше стоимости бумаги, и применяется лишь в отдельных случаях для изделий, подвергающихся ударным нагрузкам или работающих на истирание (детали переключателей  [c.154]


К таким испытаниям относятся определения предела прочности при растяжении, предела текучести, удлинения, сужения поперечного сечения, ударной вязкости и специальные проверки вытяжка по Эриксену и загиб на 180° для некоторых сортов листовых металлов испытания на скручивание и на гиб с перегибом для проволоки.  [c.341]

Если согласно стандарту или техническим условиям на поставку листовой стали и труб не гарантируются испытания, предусмотренные табл. 1, или гарантируются при оговорке в заказе (например, полистные испытания, испытания на загиб, ударную вязкость при температурах —40 и —70° С, ударную вязкость после старения технологические пробы для труб — раздача, сплющивание и т. д. гидравлическое испытание труб и т. д.), то эти требования должны быть обязательно указаны в чертежах.  [c.323]

Гарантированная величина ударной вязкости некоторых марок листовой стали группы В по ГОСТ 380-71  [c.86]

Ударная вязкость и временное сопротивление разрыву листовой стали должны быть НС менее величин, указанных в табл. 41.  [c.597]

Требования к механическим свойствам и ударной вязкости (за исключением K V) листового проката установлены для поперечных образцов, труб - для тангенциальных образцов.  [c.133]

Требования к механическим свойствам и ударной вязкости (за исключением K V) листового проката установлены для поперечных  [c.135]

Чувствительность стали к старению устанавливают по отношению изменения ее ударной вязкости после старения к ударной вязкости в исходном состоянии. Старение листовой стали для холодной штамповки будет рассмотрено в гл. XI на стр. 356.  [c.250]

Механические свойства при 293 К, а также значения ударной вязкости при 233 и 203 К листового проката толщиной 10-25 мм из двух марок стали этой группы приведены в табл. 13.5.  [c.606]

Заготовки для образцов при испытании на ударную вязкость вырезают на металлорежущих станках. Допускается вырезать образцы ножницами или кислородной резкой. Во всех случаях в заготовках учитывают припуск, равный толщине слоя металла с неизменными свойствами. Заготовки для образцов отбирают вдоль направления прокатки для сортового и фасонного проката и поперек направления прокатки для листовой и широкополосной стали. Отбор заготовок из труб производится поперек направления прокатки. Если невозможно вырезать из труб поперечные образцы, допускает-  [c.38]


Хрупкие разрушения корпусной С. с. могут возникать в процессе постройки корабля при холодной правке листов, при операциях холодной гибки, а также при сварке под влиянием внутр. напряжений. Для избежания хрупких разрушений при операциях холодной правки и гибки достаточно, чтобы листовая С. с. выдерживала испытания на загиб широких проб. Для оценки склонности С. с. к хрупким разрушениям под влиянием внутр. напряжений при сварке применяются др. спец. испытания на ударный изгиб образцов Менаже при темп-ре —40° и испытание на вид излома этим испытаниям не подвергается только углеродистая сталь обычного качества. Установлено, что С. с. не дает хрупких разрушений в процессе постройки корабля, когда, при испытаниях на удар образцов Менаже при понижающихся темп-рах, критич. интервал перехода ее из вязкого состояния в хрупкое лежит ниже —40° (рис. 1). В качестве норм по испытанию при темп-ре —40° берут миним. значения ударной вязкости данной марки стали, находящейся еще в вязком состоянии. При вязком разрушении сталь имеет матовый волокнистый излом, а в случае  [c.279]

Испытания прочности сварных швов труб показали, что среднее значение предела прочности при растяжении составляет 80—100% от прочности целого материала. Для швов из листового винипласта — 85—100%. Удельная ударная вязкость сваренных образцов не ниже 60% от прочности целого материала.  [c.111]

Примечания 1. См. сноски к табл. 1.1.1. 2. Ударная вязкость стали марки 16Д по ГОСТ 6713—75 [углерод 0.10 — 0,18 медь (Д) 0,20—0,35 хром (X) я никель (Н) до 0,30 кремний (С) 0,12—0,25 марганец (Г) 0,40—0,70] Дж/см при температуре +20 °С после механического старения и при —20 °С в состоянии поставки для листовой стали >35 для сортовой, широкополосной и фасонной стали >40. 3. Модуль продольной упругости малоуглеродистых и низколегированных сталей 2,1 10 МПа.  [c.11]

Остальные характеристики пластичности относительное удлинение, ударная вязкость , глубина погружения щарика в испытаниях на штампуемость листовых материалов (проба Эриксена ), угол загиба и количество чбов с перегибами листовых проб уже не могут быть Jльзoнaны для определения предела пластичности без зработки соответствующих методов пересчета с этих драктеристик на величину Лр.  [c.489]

Металлофосфатные покрытия применяют для изоляции листовой электротехнической стали. В качестве основы для заливочных компаундов обычно применяют полиалюмофосфаты с введением в них некоторых неорганических добавок. Эти компаунды могут быть получены жидкими, полужидкими и пастообразными. После затвердевания при комнатной температуре и последующей термообработки они становятся твердыми, механически достаточно прочными. Рабочая температура алюмо( сфат-ных заливочных компаундов до 700° С в воздухе, вакууме и аргоне. Для примера укажем на параметры одного из алю.мофосфатных заливочных компаундов при комнатной температуре Епр = 2,7 МВ/м, предел прочности при сжатии 20 МПа, удельная ударная вязкость 0,7 кДж/м при 600° С Е р = 1,3 МВ/м, предел прочности при сжатии 22,8 МПа, удельная ударная вязкость 1,1 кДж/м , температурный коэффициент линейного расширения в интервале температур 150—550° С составляет (2,6—7,6)-10- °С-1.  [c.246]

Таблица 147. Ударная вязкость образцов с надрезом типа I, IV и с трещиной листовой стали толщиной 20 мм. Твердость образцов после всех вариантов термической обработки ИВ 300 fll6 с. 33] Таблица 147. <a href="/info/4821">Ударная вязкость</a> образцов с надрезом типа I, IV и с трещиной <a href="/info/58205">листовой стали</a> толщиной 20 мм. Твердость образцов после всех вариантов термической обработки ИВ 300 fll6 с. 33]
На механические свойства натриевого стекла нейтронное облучение влияет мало. Нейтронный поток, уменьшающий модуль разрыва на 10%, не оказывает влияния на ударную вязкость [227]. В других опытах для листового стекла, облученного потоками надтепловых нейтронов (3,6 16) 10 нейтрон см , модуль Юнга не изменился [160]. Также не изменялось внутреннее трение стекла, облученного такими же интегральными потоками.  [c.218]


Критическая температура перехода стали в хрупкое состояние в значительностй степени зависит от величины зерна стали. Пластичность малоуглеродистой стали при низких температурах повышается с уменьшением величины зерна, а температура перехода в хрупкое состояние сдвигается в сторону низких температур при измельчении перлита [62]. Увеличение размеров ферритного зерна вызывает повышение порога хладноломкости у мягкой листовой стали. У мелкозернистой стали ударная вязкость при понинсении температуры уменьшается плавно, а у крупнозернистой — резко [50].  [c.42]

Ударная вязкость п временное сопротивление разрыву листовой стали долншы быть не меяее величин, указанных в табл. 44.  [c.427]

Г2 Детали листовых и сварных конструкций вагонов, доменных печей, воздухонагревателей. аппаратов химического и нефтяного машиностроения, работающих под давлением и при температурах до 450 С. Сталь не склонна к тепловой хрупкости и не разупрочняется в результате длительного старения. Ударная вязкость после старения при повышенных температурах также снижается незначительно  [c.291]

Полиэфирные стеклопластики имеют малый удельный вес, достаточно высокую механическую прочность, превышающую прочность дерева и некоторых металлов, хорошие термо-звуко-электроизоляционные, а также и антимагнитные свойства. Они химически стойки к пресной и соленой воде, к растворителям и биохимическому воздействию. Отличаются антикоррозийной стойкостью, способностью поглош,ать и гасить вибрации, имеют высокую ударную вязкость, хорошую эрозионную стойкость, радиосветопроницаемость. Полиэфирные стеклопластики обладают широкими возможностями формования и переработки в монолитные крупные изделия без ограничения стандартными размерами (металлические конструкции, как правило, ограничены шириной, длиной и толш иной листового металла).  [c.149]

Текстолит по способу изготовления подобен гетинаксу, но отличается от последнего наполнителем, в качестве которого нрнме-няют текстильную ткань штапельное полотно, бязь, миткаль н др. Характеризуется он хорошимп антифрикционными свойствами, большими удельной ударной вязкостью, прочностью на сжатие и более высокой водостойкостью, чем гетинакс является хорошим электроизоляционным материалом. Различают текстолиты 1) автотракторный (ВТУ МХП М 3833—53) 2) гибкий марки МА (ТУ МХП 488— 50), марки МГ (ТУ МХП 1518—50) 3) листовой элект-]ютехпических марок А, В, ВЧ, Г, СТ (ГОСТ 2910—67) 4) металлургический (ТУ ГХК М-827 —60) 5) поделочный (ГОСТ 5—52 ). Применяют текстолит для изготовления деталей, работающих в узлах трения, зубчатых колес и др. Хорошо обрабатывается на металлорежущих станках, поддается склеиванию казеиновыми, карбамидными и другими клеями.  [c.312]

Важной характеристикой коррозионностойких сталей и сплавов, в том числе и нержавеющих, является величина предела текучести при повышенных температурах, поскольку в таких условиях эксплуатируются многие аппараты и технологическое оборудование, выполненные из аустенитных хромоникелевьгх сталей. Знание этого параметра необходимо как потребителям стального оборудования, так и металлургам, так как на металлургических и трубопрокатных" заводах для интенсификации технологических процессов применяют подогрев сталей (например, при теплой прокатке листовой стали, теплой прокатке и волочении труб, проволоки и т. п.). Следует иметь в виду, что при повышении содержания С в аустенитных хромоникелевых сталях наряду с возрастанием прочности происходит снижение их коррозионной стойкости, пластичности и ударной вязкости после отпуска при 600-800 Стабильность этих характеристик наблюдается только при содержании около 0,02 % С в отпущенной при 500-800 °С после закалки стали. Отрицательное- влияние повышенного содержания С обьлно частично устраняется присадкой стабилизирующих элементов (Ti, Nb). Аустенитные хромоникелевые стали с очень низким содержанием С по сравнению со стабилизированными обладают большей стойкостью к МКК и к общей коррозии, имеют лучшие технологические свойства.  [c.29]

УСЛ0ВНВ1Й порог хладноломкости при ударной вязкости не менее K U = = 0,3 МДж/м для листовой стали толщиной 12—40 мм..  [c.14]

Модифицированные полимеры. В этом разделе рассматриваются полимерные материалы, получаемые модифицированием полимеров для снижения, главным образом, хрупкости и повышения ударной вязкости. Пемодифицированный полистирол представляет собой довольно хрупкий бесцветный и прозрачный термопласт с температурой стеклования 90—95 °С. Повышение ударной вязкости достигается модифицированием его каучуками на стадии синтеза или механическим смешением готовых полимеров. Низкая хрупкость УПС сочетается с повышенной гибкостью и высоким относительным удлинением при разрыве. К недостаткам УПС следует отнести матовость даже в тонких пленках, что исключает его применение для прозрачной упаковки. Из листовых УПС вакуумным формированием обычно изготавливают подносы, чашки, коробки, вкладыши в коробки, пузырьки и т. п. Можно смело сказать, что УПС относится к самым распространенным полимерным материалам, используемым в упаковке пищевых продуктов, косметики, лекарств вследствие его стойкости при контакте с различными веществами. При этом его несколько пониженные показатели прочности при растяжении и поверхностной твердости по сравнению с немо-дифицированным полистиролом не имеют особого значения.  [c.455]

Листовую углеродистую сталь марки СтЗсп и двухслойную сталь с основным слоем и стали марки СтЗсп толщиной более 25 мм и марки СтЗГпс толщиной более 30 мм допускается применять при условии проведения испытаний металла на ударный изгиб на предпри-ятии-изготовителе аппарата или сосуда. Испытания на ударный изгиб следует проводить на трех образцах. При этом ударная вязкость K U должна быть не менее 50 Дж/см при температуре + 20°С 30 Дж/см - при температуре -20 °С и после механического старение, а на одном образце допускается ударная вязкость не менее 25 Дж/см .  [c.41]


Малые добавки Mg и С а повысили пластические свойства листовой трансформаторной стали. В некоторых плавках число гибов увеличилось более чец на порядок. Однако и в этом исследовании модификаторы не всегда оказывали существенное влияние на пластические свойства. Воспроизводимые результаты наблюдались при исследовании влияния Ti на ударную вязкость стали Х23Н18 при температурах 1100—1150° С. При 0,25% Ti значение ударной вязкости увеличилось примерно в два раза. С увеличением концентрации Ti  [c.173]

Сериальные кривые ударной вязкости и доли волокна в зависимости от температуры испытания основного металла трех фрагментов декомпозера приведены на рис. 5.97. Критические температуры хрупкости Г50 для фрагментов А, Б и В составляют -7, -33, -5°С соответственно. Это указывает на высокое сопротивление сталей хрупкому разрушению, используемых на изготовление декомпозеров. При температурах испытания вплоть до -40"С K U > 49 Дж/см . Таким образом, для основного металла всех трех фрагментов декомпозера выполняется требование ГОСТ 380-88 (71) к листовому прокату категории 5 качества в соответствующих толш,инах по величине ударной вязкости при температуре испытания -20 С.  [c.345]

Закалкой с последующим отпуском при 600°С можно обеспечить высокую прочность листовой стали 14Г2 (предел текучести не менее 50 кГ мм ) при удовлетворительных значениях пластичности и высокой ударной вязкости (до минус 60° С).  [c.56]

Окончательное раскисление металла в ковше осуществляется добавкой 0,8 кг т А1 и 0,04%Ti (без учета угара). Оптимальная температура конца прокатки листовой стали 10Г2С1 составляет 800—900° С при более низкой температуре имеет место значительный наклеп, сопровождающийся пониженной пластичностью и вязкостью горячекатаных листов. Для повышения свойств таких листов рекомендуется применять отпуск при 600— 620° С. При медленном охлаждении после проката толстых листов возможно понижение прочности. Нормализация таких листов (890—930° С) приводит к повышению характеристик прочности и повышению ударной вязкости.  [c.63]

Прокатанные из стали ЮХНДП листы толщиной 5,9 и 0,12 мм (металл выплавлялся в 300-г и 400-г мартеновских печах) как по значениям механических свойств при растяжении, так и по ударной вязкости при —40° С удовлетворяли требованиям технических условий. Для листовой или полосовой стали толщиной до  [c.119]

Результаты определения ударной вязкости листовой нормализованной стали в интервале температур от + 20° С до —100° С показали, что сталь 17Г2СФ обла дает высокими значениями этой характеристики (не менее 4 кГ-м смР- при —40° С и не менее 3,0 кГ-м1см при —60°С). Высокие значения ударной вязкости для большинства исследованных плавок сохраняются до —80  [c.137]

Хороший комплекс механических свойств показывает низколегированная сталь с нитридами алюминия и в нормализованном состоянии. В этом случае нитриды алюминия образуют барьеры, препятствующие росту зерна (размер зерна 7—10 мкм). При содержании 0,16—0,22% С, 1,4о/оМп, 0,023% N и 0,06% А1 нормализованная листовая сталь марки 16Г2АЮ характеризуется пределом текучести в диапазоне 43—47 кГ1мм , временным сопротивлением 60—65 кГ/мм и относитель-, ным удлинением 26—28%. Как в исходном состоянии, так и после деформационного старения сталь 16Г2АЮ обладает высоким значением ударной вязкости при минусовых температурах и высокой хладостойкостью (рис. 56). Такая сталь малочувствительна к резким концентраторам напряжений и характеризуется высоким сопротивлением хрупким разрушениям в условиях эксплуатации металлических конструкций.  [c.143]


Смотреть страницы где упоминается термин Листовая Вязкость ударная : [c.231]    [c.295]    [c.100]    [c.238]    [c.500]    [c.131]    [c.131]    [c.43]    [c.251]    [c.84]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.231 ]



ПОИСК



Вязкость ударная

Листовая конвертерная — Вязкость ударная

Листовая мартеновская — Вязкость ударная

Листовая сталь бессемеровская — Вязкость ударная при отрицательных

Листовая сталь бессемеровская — Вязкость ударная при отрицательных свойства

Листовая сталь бессемеровская — Вязкость ударная при отрицательных температурах 239 — Механические

Ударная вязкость см- Вязкость

Ударная вязкость см- Вязкость ударная



© 2025 Mash-xxl.info Реклама на сайте