Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Образцы для испытания на одноосное растяжение — Характеристики

Характеристика образцов для испытания на одноосное растяжение  [c.315]

Диаграмма деформирования ао(ёо) является характеристикой материала и устанавливается экспериментально. Для этого обычно испытывают материал на одноосное растяжение и последующее сжатие. Образцы растягивают до различных значений ёо и затем разгружают. Затем из них вырезают образцы на сжатие таким образом, чтобы сжатие происходило в направлении предшествовавшего растяжения. При испытании на сжатие определяют условный предел текучести оо (обычно при допуске на интенсивность пластической деформации 0,002) Для достаточно точного определения оо рекомендуется производить испытание с использованием механических тензометров Записав согласно уравнениям (1.85) приращение продольной деформации при осевом растяжении вдоль оси Х, получаем  [c.27]


Усталостные характеристики оказываются очень чувствительными к условиям проведения испытаний. Помимо таких условий, как химический состав, микроструктура, температура, термообработка, которые существенно влияют и на данные статических испытаний, серьезное влияние оказывают чистота механической обработки поверхности, форма образца, его размеры, характер испытаний и т. п. Например, предел текучести, определенный для одного и того же материала из опытов на растяжение цилиндрического образца и из опытов на изгиб бруса, на образцах с полированной поверхностью и на образцах, обработанных резцом на токарном станке, будет, по суш еству, одним и тем же. Пределы же усталости, определенные из опытов на растяжение— сжатие и из опытов на изгиб, иногда очень сильно, отличаются, причем разница достигает 40 — 50% (по отношению к меньшей из величин). Несопоставимые данные об усталостных характеристиках получаются из испытаний двух образцов при прочих равных условиях, один из которых хорошо отшлифован, а другой грубо обработан на токарном станке. Небезразличным также оказывается, ведутся ли испытания на знакопеременный симметричный изгиб в одной и той же физической плоскости цилиндрического образца или путем вращения вокруг криволинейной оси изогнутого образца, как это делается в ряде испытательных машин на усталость, когда все диаметральные сечения образца проходят одну и ту же историю напряжений. В справочниках данные об усталости обычно приводятся для трех видов типовых испытаний на изгиб, на одноосное растяжение—сжатие и на кручение (соответствующие пределы усталости обозначаются  [c.307]

Например, по испытаниям [90] нельзя полу чить даже приближенные графики временной зависимости прочности для каждого вида напряженного состояния, поэтому можно говорить только о качественной оценке влияния напряженного состояния анализ результатов испытаний позволяет отметить тенденцию к снижению длительной прочности при двухосных равных растяжениях по сравнению с соответствующей характеристикой при одноосном растяжении. Более четкая картина выявлена результатами испытаний на длительную прочность двух никелевых сплавов [91 ]. Тонкостенные трубчатые образцы (внутренний диаметр 24 мм, толщина стенки 0,76 мм) испытаны под действием внутреннего давления и осевой силы. Разным сочетанием внешних нагрузок создавалось как одноосное, так и двухосное растяжение (о, > >0).  [c.144]


Наиболее распространенным видом испытаний механических свойств металлов являются испытания на растяжение. Они дают возможность определить характеристики прочности и пластичности металлов в условиях статического одноосного нагружения. Машины для испытаний оснащены устройствами рычажного (либо индикаторного) типа для записи диаграммы растяжения, т. е. изменений длины образца в зависимости от приложенного напряжения (табл. 2.1).  [c.8]

Перенесение такого подхода на сложные напряженные состояния потребует исследования поведения материала по меньшей мере в условиях трехосного растяжения сжатия, к которому сводится любое сложное напряженное состояние. Здесь мы попадаем в качественно новую ситуацию, связанную с неодно-осностью напряженного состояния. Так, для получения механических характеристик материала при одноосном растяжении-сжатии минимально необходимо испытать только два образца — один на растяжение, а другой на сжатие. Для получения полной информации о поведении материала при трехосном растяжении-сжатии нужны испытания при всевозможных сочетаниях напряжений по разным направлениям. А таких сочетаний бесконечное множество.  [c.347]

Рассмотрим пример идентификации характеристик однонаправленного материала по результатам испытаний на одноосное растяжение многослойных материалов сложных структур 20°]. 1 45=], Е0/ 45°Ь Каждую структуру испытывали на одноосное растяжение в главных направлениях ортотропии материала, при этом измерены деформации вдоль и поперек образца (рис. 8.6). В результате экспериментов для каждой структуры материала были определены следующие технические постоянные упругости  [c.248]

Для определения прочности при статических HaqjysKax образцы испытывают на растяжение, сжатие, изгиб и кручение. Испытание на растяжение - самый распространенный и экономичный вид испытаний, потому что он дает хорошо воспроизводящиеся характеристики, имеющие четкий физический смысл и воспроизводит условия нагружения металла аппарата, работающего под внутренним давлением. Однородное одноосное напряженное состояние, реализуемое на начальных стадиях испытания, позволяет прямо сравнивать достигнутые напряжения с расчетными напряжениями в конструкциях.  [c.278]

Основное условие получения достоверных результатов в ква-зистатических испытаниях — поддержание с заданной точностью однородности напряженного и деформационного состояния материала в объеме рабочей части образца. Это позволяет принимать регистрируемые зависимости между напряжением и деформацией за характеристики поведения локального объема материала. Таким методом определены характеристики сопротивления материалов деформированию в большинстве проведенных до настоящего времени исследований, в основном при испытаниях на растяжение или сжатие со скоростями до 10 м/с [69, 167, 208, 210, 305, 406, 409]. Область более высоких скоростей деформирования, особенно при испытаниях на растяжение, обеспечивающих получение наиболее полной информации о поведении материала под нагрузкой, практически не исследована. Такое ограничение исследований обусловлено тем, что с ростом скорости деформации возрастает влияние волновых процессов и радиальной инерции в образце и цепи нагружения, ведущих к нарушению однородности деформации и одноосности напряженного состояния в объеме рабочей части образца и затрудняющих приведение усилий и деформаций в материале. Уменьшение влияния этих эффектов требует разработки специальных методик для испытаний с высокими скоростями деформации.  [c.13]

Увеличение твердости металлических наноматериалов может составлять 500 — 600 % для хрупких объектов такое увеличение несколько ниже, но тоже довольно значительно — до 200 — 300%. Твердость некоторых наноматериалов приведена в табл. 3.9, 3.10. В тех случаях, когда нанокристаллические образцы имеют размеры, достаточные для проведения испытаний на растяжение (продольный размер такого образца должен намного превосходить поперечный размер, а последний в свою очередь должен существенно превыщать размер зерна), может быть получена информация о пределе текучести, пределе прочности и относительном удлинении при одноосном растяжении. В силу особенностей технологии наноматериалов последние данные имеются преимущественно лищь для металлических образцов, полученных методами интенсивной и пластической деформации и импульсного электроосаждения. В табл. 3.11 содержится информация об обычной и электро-осажденной нанокристаллической никелевой ленте. Преимущества в механических и эксплуатационных характеристиках нанокрис-таллического никеля по сравнению с обычной никелевой лентой очевидны. Причем обращает на себя внимание то, что если для ленты с размером зерна около 100 нм наблюдается вполне приемлемый уровень пластичности (относительное удлинение около 15%), то для лент с зерном около 10 нм, отличающихся более высокими показателями прочности и твердости, пластичность практически отсутствует. Отметим, что согласно оценкам значение V (характерный масщтаб устойчивости дислокаций в нанокристаллах, ниже которого наличие дислокаций маловероятно см. подразд. 2.3) для никеля составляет 10 нм. Снижение пластичности для лент с размером зерен -100 нм можно объяснить наличием небольщого количества пор (см. табл. 2.6).  [c.83]


Рассмотрим возможность прогнозирования зависимости S (x) по уравнению (2.22), исходя из следующей процедуры. Коэффициенты с с и Лд в (2.22) будем определять на основании.экспериментальных данных по статическому разрыву одноосных образцов в исходном состоянии (первая серия испытаний), а сравнение аналитической зависимости S (x) проведем с экспериментальными данными, полученными в третьей серии испытаний (циклический наклеп с последующим растяжением в области низких температур). На рис. 2.12 выполнено такое сравнение зависимости 5с(и), рассчитанной по уравнению (2.22) ( i = 2,27. 10- МПа-2 С2 = 4,03- 10 MHa Лд=1,87) с экспериментальными значениями 5с для стали 15Х2НМФА. Условия предварительного циклического деформирования и характеристики последующего хрупкого разрушения образцов приведены в табл. 2.1 и 2.2.  [c.81]

Механич, характеристики ползучести и длит, прочности конструкц. материалов обычно определяют в опытах на растяжение или сжатие цилиндрич. образцов (одноосное напряжённое состояние) либо путём испытаний трубчатых или плоских образцов при разл. комбинациях нагрузок (сложное напряжённое состояние). Длительность испытаний зависит как от уровня нагрузок, гак и от задач использования данного материала в конкретных конструкциях. Она может колебаться от неск. минут (для решения техноп. задач обработки металлов, непрерывной разливки, ракетной техники) до сотен тысяч часов (стационарные турбины, строит, конструкции).  [c.10]

С переходом от однократного нагружения к циклическому основным параметром разрушения становится скорость роста трещины dt/dN, зависящая от размаха коэффициента интенсивности напряжений Д/С. Построение зависимости скорости роста трещины от коэффициента интенсивности напряжений (диаграмма циклической трещино-стойкости - ДЦТ) позволяет получить универсальную характеристику циклической трещиностойкости для данных условий испытания. Экспериментально эту зависимость определяют испытанием образцов с предварительно созданным концентратором большая часть экспериментальных данных получена при испытании плоских образцов с относительно крупными трещинами в условиях одноосного или вне-центренного растяжения, изгиба и растяжения (сжатия), очень мало исследований выполнено на цилиндрических образцах, когда прямое наблюдение за развивающейся трещиной затруднительно.  [c.41]


Смотреть страницы где упоминается термин Образцы для испытания на одноосное растяжение — Характеристики : [c.147]    [c.10]    [c.260]    [c.483]   
Испытательная техника Справочник Книга 2 (1982) -- [ c.315 , c.316 ]



ПОИСК



Образец

Образцы для испытания на растяжени

Образцы на растяжение

Растяжение образцы для испытаний

Растяжение одноосное



© 2025 Mash-xxl.info Реклама на сайте