Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полная группа симметрии гамильтониана молекулы

Полная группа симметрии гамильтониана молекулы  [c.101]

Совокупность сталкивающихся или взаимодействующих молекул в принципе также можно описывать некоторым гамильтонианом, симметричным относительно действия операций перестановок тождественных ядер и инверсии Е. Следовательно, можно построить полную группу перестановок с инверсией для такой системы ядер. Путем обобщения понятия осуществимости можно построить группы МС для таких систем, которые позволяют выявить ограничения по симметрии для возмущений и переходов без подробного анализа гамильтониана (подробный вид гамильтониана часто неизвестен) этот вопрос рассмотрен недавно в работе [96]. Группы МС применялись также при рассмотрении молекул, изолированных в матрице (в статическом электрическом поле) [77].  [c.411]


Так как для жестких нелинейных молекул молекулярная точечная группа и группа молекулярной симметрии изоморфны, мы используем общие для них таблицы характеров и обозначения неприводимых представлений (см. приложение А). Но хотя вибронные состояния в обеих группах классифицируются одинаковым образом, мы должны помнить, что для полного гамильтониана молекулярная точечная группа является группой приближенной симметрии, тогда как группа молекулярной симметрии является группой точной симметрии.  [c.302]

ГД6 Р АА ) вв )(со... (NN ) является операцией перестановок ядер-ных спинов. Из этого соотношения мы видим, что операция точечной группы i является истинной операцией симметрии не только вибронного гамильтониана, как все остальные операции симметрии точечной группы,— она является операцией симметрии ровибронного гамильтониана (см. задачу 11.1). Операция i не является истинной операций симметрии полного гамильтониана из-за наличия в нем членов взаимодействия, содержащих ядерные спипы, однако такие члены обычно очень малы. Операция точечной группы i отличается от операции Е и не дает классификацию уровней по четности. Классификация энергетических уровней молекул по индексам gnu является приближенной и теряет смысл при учете взаимодействий, зависящих от ядерных спинов ).  [c.306]

Оператор Гамильтона для многоатомной молекулы 227, 403 Оператор импульса 227 Операторный метод решения волнового уравнения 226 Оператор полного момента количества движения 227, 403, 431 Операции симметрии 11 влияние на вращательную, электронную и полную собственные функции 118 влияние на вырожденные нормальные колебания 96 (глава П, Зб) влияние на невырожденные нормальные колебания 95 (глава II, За) влияние на колебательные собственные функции 115 (глава И, Зв) возможные комбинации (точечные группы) 16  [c.618]

Каждый из наборов этих операций составляет отдельную группу, а каждая группа симметрии гамильтониана представляет собой прямое произведение всех этих групп. При решении конкретных задач используют не все перечисленные группы. Группа (а) используется только в связи с Паули принципом, согласно к-рому волновая ф-ция электрона антисимметрична относительно любой перестановки электронов группа (б) отражает закон сохранения для полного угл. момента молекулы группа (в) для изолнров. молекулы несущественна, т. к, трансляции молекулы не влияют на волновые ф-ции, описывающие ввутр. состояние молекулы инвариантность гамильтониана относительно групп (г) и (д) показывает, что он может содержать только чётные степени угл. моментов и пространственных декартовых координат частиц.  [c.515]


Классификация молекулярных состояний по точной симметрии, рассмотренная в этой главе, следует из инвариантности полного гамильтониана молекулы относительно группы G или ее подгрупп К(П), , G<">, Srt . Группа G является полной группой симметрии точного молекулярного гамильтониана, и для ее вывода достаточно знать только химическую формулу молекулы. Поскольку группа О вводится без каких-либо подробных сведений о гамильтониане, такой общий подход имеет одновременно и преимущества, и недостатки. Преимущества его заключаются в том, что группу G можно довольно легко определить и результаты, вытекающие из соображений симметрии, всегда верны (для изолированной молекулы). Недостаток такого подхода состоит в том, что не учитываются никакие особые свойства, которыми может обладать гамильтониан. Учет этих особых свойств гамильтониана отдельной молекулы может приводить к случайному вырождению уровней, относящихся к различным типам симметрии группы, к случайному обращению в нуль недиагопальных.  [c.127]

Предлагаемая вниманию читателя книга написана видным канадским спектроскопистом-теоретиком Ф. Банкером. В книге дается систематическое изложение теории перестановочно-инвер-сионных групп симметрии и рассматриваются применения таких групп для решения задач молекулярной спектроскопии. Перестановочно-инверсионная группа принципиально отличается от точечной группы, применявшейся во всех ранее опубликованных книгах по молекулярной спектроскопии, тем, что она является точной группой симметрии полного гамильтониана молекулы, а точечная группа применима только к (приближенному) виброн ному гамильтониану. Поэтому перестановочно-инверсионные группы пригодны для анализа электронно-колебательно-вращательных (ровибронных) спектров всех молекул без исключения, а точечные группы применимы только для анализа электронноколебательных (вибронных) спектров жестких (точнее, квазижестких) молекул, имеющих одну равновесную конфигурацию (или несколько равновесных конфигураций, но при условии, что туннелирование между ними отсутствует).  [c.5]

Следовательно, все элементы полной перестановочно-инверсионной группы ядер (ППИЯ) молекулы должны коммутировать с гамильтонианом молекулы (5.6), и поэтому ППИЯ-группа является группой симметрии этого гамильтониана, Любой эле-  [c.70]

Точечная группа симметрии для равновесной конфигурации ядер в молекуле определяется легко (см. гл. 3). При использовании точечной группы для преобразования волновых функций молекулы элементы точечной группы рассматриваются как вра-н1ения и отражения вибронных переменных (колебательных смещений и электронных координат) в системе координат, закрепленной в молекуле (см, разд. 5.5 и рис. 5.7 в книге [121]). Молекулярная точечная группа является группой симметрии вибронного гамильтониана, так как расстояния между частицами при действии операций этой группы остаются неизменными. Операции молекулярной точечной группы не влияют на углы Эйлера, компоненты углового момента Ja и ядерные спиновые координаты. Если в гамильтониане мы пренебрегаем членами, связывающими вибронные координаты с другими степенями свободы (особенно с членами кориолисова взаимодействия и центробежного искажения), то мы получаем приближенный гамильтониан, который коммутирует с элементами молекулярной точечной группы. Следовательно, молекулярная точечная группа является группой приближенной симметрии полного молекулярного гамильтониана, а возмущения типа кориолисова взаимодействия и центробежного искажения являются основными эффектами, понижающими симметрию гамильтониана. Поэтому молекулярная точечная группа обычно используется для классификации колебательных и электронных состояний и для изучения вибронных взаимодействий, но не используется для классификации ровибронных состояний. Точечная группа является группой точной симметрии вибронного (и электронного) гавильтониана.  [c.299]

Такое вырождение возникает из-за того, что симметрия электронного гамильтониана в линейной конфигурации молекулы (т. е. Do h см. гл. 12) выше, чем в нелинейной конфигурации (т. е. av). Однако симметрия ровибронного гамильтониана не приводит к возникновению вырождения, а совместной группой МС для всех четырех электронных состояний NO2 является группа 2v(M) или группа ППИЯ (полная группа перестановок и инверсий) ядер молекулы. Из неэмпирических (аЬ initio) расчетов следует, что энергия состояния В имеет минимум в изогнутой конфигурации с неравными длинами связей [65]. Однако из-за наличия небольшого потенциального барьера между симметрично-эквивалентными формами имеет место туннелирование и группой МС электронного состояния В является группа 2v(M).  [c.338]



Смотреть страницы где упоминается термин Полная группа симметрии гамильтониана молекулы : [c.96]    [c.310]    [c.364]    [c.297]   
Смотреть главы в:

Симметрия молекул и молекулярная спектроскопия  -> Полная группа симметрии гамильтониана молекулы



ПОИСК



SU (3)-Симметрия

Гамильтониан

Гамильтониан молекулы

Группа симметрий

Полная симметрия

Полная симметрия в молекулах с симметрией Csv

Симметрии и группы симметрии



© 2025 Mash-xxl.info Реклама на сайте