Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы на основе сложных систем

В качестве дисперсной фазы были использованы порошки сложных тугоплавких сплавов на основе систем N1—Сг—А1, №—А1, Ре—Сг—А1, Со—Сг—А1, отличающиеся высокой жаростойкостью.  [c.143]

В последние годы опубликовано много данных об анодном поведении никелевых сплавов. Исследовано поведение как сплавов бинарных систем, в которых никель является главным компонентом, так и более сложных промышленных никелевых сплавов. Достаточно большое число данных позволяет провести рациональную и довольно полную интерпретацию многих коррозионных свойств никелевых сплавов на основе нх анодного поведения.  [c.140]


К этой группе относятся стали и сплавы, формообразование которых или высокая коэрцитивная сила достигается благодаря пластическому деформированию. В эту группу входят легированные стали, сплавы систем Ре-Со-Сг, Ре-Со-У, Ре-Со-Мо, сплавы на основе меди, платины, а также сплавы систем Ре-М1-А1 и Ре-М1-А1-Со, магниты из которых получают посредством горячего деформирования в виде листов, прутков и изделий сложной конфигурации.  [c.400]

Подходы синергетики и теория фрактальных структур, рассмотренные в данной монографии применительно к науке о материалах, являются основой для решения проблемы получения материалов с заданными свойствами. Классическое материаловедение формировалось на исследованиях физико-химических систем близких к равновесным, развивающихся по законам временной симметрии. Это позволило решить большой класс сложных проблем, связанных с получением сплавов и их обработкой.  [c.362]

Наиболее ценными и перспективными материалами являются рениевые сплавы на основе вольфрама и молибдена, а также более сложные композиции на основе этих систем. При легировании этих металлов рением одновременно с повышением прочности повышается их пластичность. Кроме того, при введении рения понижается температура перехода вольфрама и молибдена в хрупкое состояние. Механические свойства рениевых сплавов на основе вольфрама и молибдена представлены в табл. 25, 26.  [c.98]

Возможности комбинирования металлов и других элементов в составах покрытий в последние годы резко расширились (см. гл. 3). Особенно большое внимание уделяется созданию сложных жаростойких покрытий. Среди двойных металлических систем наибольший интерес в этом отношении представляют А1—N1, Л1—Со, А1—Сг, А1—V, А1—Т1, А1—2г, Сг—N1, Сг—Т1, Сг—Р(1, Сг-Ке, а среди тройных — Сг—А1—Л, Сг—А1—N1, Сг—А1—Ре. Покрытия на основе этих систем наиболее приемлемы для защиты легированных сталей и никелевых сплавов. Их наносят обычно диффузионными способами. Соответствующие диффузионные покрытия описаны в многочисленной литературе [51, 143]. Например, диффузионная вакуумная металлизация хромом и алюминием оправдывает себя как эффективное средство увеличения надежности и долговечности лопаток турбин, работающих при 750 °С [144]. На поверхности таких покрытий при эксплуатации образуются шпинели Н1А1204 и Ы1Сг204, которые защищают сплав от окисления и разрушения.  [c.100]

Из сказанного следует, что при любой заданной температуре давление пара сплава должно быть ниже, чем давление пара чистого металла, и в первом приближении определяться по закону Рауля. Приводимые в работе Дэшмана [8] примеры иллюстрируют эту закономерность. Так, в сплаве железа с 25% (ат.) Ni при 1200 С давления паров железа и никеля при нагреве сплава должны быть соответственно равны 1 10 и 3-10 мм рт. ст. Полагая справедливым действие закона Рауля, считаем, что давления паров железа и никеля при нагреве сплава должны быть равны соответственно 7,5-10 и 8-10 мм рт. ст. Из этого можно сделать вывод, что железо будет испаряться примерно в 10 раз быстрее, чем никель. Отсутствие достоверных экспериментальных данных о скоростях испарения компонентов сплавов тугоплавких металлов, а также сложных систем позволяет пока считать, что ориентировочные данные о закономерностях испарения сплавов при нагреве в вакууме могут быть получены только на основе закона Рауля. При этом следует еще раз подчеркнуть, что закон Рауля можно применять только для сплавов, являюш,ихся в исследуемом интервале температур твердыми растворами. Если же второй компонент сплава (даже при небольшом его содержании в сплаве) не образует с основным металлом твердого раствора, а находится в виде включений второй фазы, то к такому сплаву рассмотренный закон не может быть применен.  [c.28]


В последнее время все большее внимание уделяется роли кристаллохимического фактора, определяющего взаимосвязь между склонностью к аморфизации и типом стабильных и метастабильных фаз, характерных для тех или иных систем [6, 12, 13, 22]. Здесь надо отметить, во-первых, что во многих системах легко аморфизирующиеся сплавы располагаются в области тех составов, которым отвечают соединения со сложной кристаллической структурой (<т-, р,- и 0-фазы или фазы Лавеса). Предполагается, что для таких сплавов процесс образования критических зародышей сильно затруднен из-за необходимости существенного перераспределения компонентов в расплаве. Но это только один аспект проблемы. Основываясь на данных об атомной структуре метастабильных фаз, которые являются последними в ряду кристаллических состояний, возникающих по мере увеличения скорости охлаждения, можно сформулировать следующий кристаллохимический критерий для определения сплавов с повышенной склонностью к аморфизации (Ю.. А. Скаков) наибольшей склонностью обладают сплавы, которые при скоростях охлаждения, близких к критическим, кристаллизуются в структурах, имеющих атомную координацию, отвечающую упорядоченной о. ц. к. решетке (сверхструктура на основе о. ц. к. решетки). Эти данные позволяют представить, что в процессе охлаждения переохлажденного расплава не только протекают процессы релаксации атомной структуры, связанные с принципом эффективной упаковки атомов, но и усиливается дифференциация компонентов, так что в предельно переохлажденном расплаве достигается такая равновесная степень композиционного порядка, которая обусловливает или кристаллизацию упорядоченных метастабильных фаз, или при охлаждении со скоростью выше критической — аморфизацию расплава с координацией атомов в областях локального порядка, сходной с координацией атомов этих фаз.  [c.12]

Возможны и более сложные случаи контактной коррозии — коррозии полиметаллических конструкций, включающих несколько металлов и сплавов с различными потенциалами. Коррозионное поведение таких систем можно рассчитать на основе теории многоэлектродных коррозионных элементов, разработанной Г. В. Акимовым и Н. Д. Томашо-вым [6, 7].  [c.77]

Все сплавы па основе Уз51 оказались очень хрупкими и пористыми, поэтому металлографический анализ их был затруднен. Во всех изученных объектах отжиг мало изменял фазовый состав. Днфрактограммы сплавов после плавления и отжига приведены на рис. 1. Из-за отсутствия литературных данных о диаграммах сложных тройных систем V—РЗ—51 по имеющимся на дифрактограммах рефлексам выяснить природу примесной  [c.20]

Легированные стали представляют собой сложные системы с числом компонентов, доходящим до 7. Практически невозможно обсуждать фазовый состав и свойства таких сложных систем по соответствующим диаграммам состояния. Поэтому приходится рассматривать влияние легирующих элементов на структуру и свойства сталей и вообще сплавов иа основе железа с нескольких позиций. Прежде всего следует проследить влияние легирующих элементов на положение некоторых критических точек диаграммы состояння двойной системы железо — углерод (см. рис. 46). Установлено, что все легирующие элементы сдвигают эвтектоидную точку 5 диаграммы состояния системы железо — углерод в область меньших концентраций углерода. Точно такое же действие они оказывают на точку Е, соответствующую наибольшей растворимости углерода в аустените. Это значит, что доэвтектондная углеродистая сталь при введении легирующих элементов может стать заэвтектоидной, а в за-эвтектоидной стали может появиться ледебуритная эвтектика. Наиболее сильное действие на смещение точек 5 и оказывают вольфрам и кремний.  [c.176]

Примеси внедрения ускоряют эвтектоидный распад во всех титановых сплавах. Из примесей внедрения следует особо выделить водород, так как он образует с титаном сложную систему -эвтектоидного типа с температурой эвтектоидного превращения 320—325° [3, 4, 15]. Поданным Мак Квиллена [3], содержание водорода в р-фазе эвтектоидного состава равно примерно 38 ат.% (1,3 вес. %). При эвтектоидной температуре р-фаза этого состава перестраивается в а-фазу с содержанием водорода около 8 ат, % (0,19 вес.%) и 1>-фазу в виде гидрида титана с 47 ат.% (1,8 вес. %) водорода, т. е. близкого по составу к Т1Н. Однако В. И. Михеева [16] приводит несколько отличные данные Левнинга, Сивертса и Хэгга содержание водорода в Р фазе эвтектоидного состава, за основу которой условно принят гидрид Т1Н, составляет 44 ат.% (1,65 вес.%) у-фаза считается фазой на основе гидрида ИНг. Растворимость водорода в а-фазе при комнатной температуре меньше 0,14 ат. % (0,03 вес.%). При этом наиболее резкое изменение растворимости имеет место в интервале от эвтектоидной температуры до 125°.  [c.15]


Построение полных диаграмм состояния даже в случае относительно простых тройных систем требует выполнения сложного и трудоемкого эксперимента. Трудности особенно велики при изучении тугоплавких систем, когда температуры плавления сплавов достигают 3000° С и более. Из-за методических трудностей динамические методы (ДТА, изучение зависимостей температура — свойство) выше 2000° С используются сравнительно мало. В то же время, как оказалось, для углеродсодержащих систем (в частности, с молибденом и вольфрамом), как и для металлических, характерны быстропротекающиевысокотемпературные превращения типа мар-тенситных. В этом случае использование метода отжига и закалок для исследования фазовых равновесий при высоких температурах малоэффективно. С другой стороны, даже после длительных отжигов при относительно невысоких температурах (< 1500° С) часто в сплавах не наблюдается состояния термодинамического равновесия. Для правильной интерпретации экспериментальных данных, учитывая столь сложное поведение сплавов, особенно важно знание общих закономерностей взаимодействия компонентов в рассматриваемых системах. Поэтому, наряду с обстоятельными многолетними исследованиями с целью построения полных диаграмм состояния [1, 9, 121, целесообразно выполнять работы, цель которых — сравнительное исследование немногих сплавов многих систем в идентичных условиях, выявление на этой основе общих черт в поведении систем-аналогов [3, 12] и использование полученных результатов при оценке собственных экспериментальных и литературных данных и при планировании новых исследований [4].  [c.161]

Стойкость no отношению к окислительным средам при высоких температурах — этому требованию суперсплавы должны удовлетворять независимо от того, имеется на них защитное покрытие или нет. Следовательно, для успешного проектирования и использования суперсплавов очень важно понять природу процессов их окисления, а также зависимость этих процессов от свойств сплавов и условий их эксплуатации. В этой главе мы дадим краткий обзор сведений об основах окислительных процессов металлов и сплавов, а затем обсудим поведение простых сплавов, образующих соединения СГ2О3 и AI2O3. Далее рассмотрим влияние обычных легирующих элементов на характер окисления этих базовых систем сплавов и заложим тем самым основу для расширенного рассмотрения и трактовки процессов окисления, которым подвергаются сложные суперсплавы.  [c.8]

Суперсплавы на никелевой основе — наиболее сложные нх шире всего применяют для изготовления деталей, работающих при самых высоких температурах. Для многих металлургов никелевые суперсплавы — самые привлекательные. Их гомологические ра эчне температуры выше, чем у любой из распространенных систем, а в двигателях с повышенными техническими характеристиками их весовая доля превышает 50 %. Металлофизика этих сплавов сложна, неоднозначна и подчас опирается на интуитивные решения. Тем не менее, зависимость их свойств от структуры изучена лучше, чем у любых материалов, предназначенных для использования в диапазоне 650—1100 °С.  [c.128]

На опытных заводах и заводах индивидуального производства слесари-инструментальщики и слесари-лекальщики должны быть в какой-то степени универсалами и обладать достаточными практическими и теоретическими знаниями. Они должны не только знать конструкции и способы применения универсальных приспособлений, штампов, прессформ, форм для литья под давлением, сложного измерительного и контрольного инструмента, но и знать основы геометрии и тригонометрии, правила технического черчепрш, систему допусков и посадок. Они должны быть также знакомы с основами термической обработки металлов и сплавов, применяемых в инструментальном деле. Квалифицированному слесарю необходимо, кроме этого, владеть и другими профессиями, например гравера, шлифовщика, токаря или фрезеровщика, что позволяет увеличить круг выполняемых им работ и исключить непредвиденные простои.  [c.8]


Смотреть страницы где упоминается термин Сплавы на основе сложных систем : [c.505]    [c.13]    [c.14]    [c.271]    [c.171]    [c.404]    [c.30]   
Смотреть главы в:

Справочник металлиста Том2 Изд3  -> Сплавы на основе сложных систем



ПОИСК



Система сложная

Сплавы на основе

Сплавы на основе системы

Сплавы системы А1—Мп



© 2025 Mash-xxl.info Реклама на сайте