Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства азотированной стали

Свойства азотированной стали  [c.348]

Режимы предшествующей азотированию термической обработки стали, механические свойства и прокаливаемость приведены в гл. 7—9. Данные об азотировании стали различных марок приведены в табл. 30.  [c.105]

Свойства азотированного слоя стали и чугуна различных марок [25]  [c.54]

Свойства азотированной легированной стали. Азотированный слой обладает высокой твердостью (фиг. 35 и 37) и износостойкостью последняя у азотированной стали в 1,5—4 раза выше износостойкости закаленных высокоуглеродистых, цементованных, а также цианированных и нитроцементованных сталей.  [c.174]


Азотирование стали — Свойства азотированных изделий 348—352 — Строение азотированного слоя 338, 339 --в тлеющем разряде (ионное) 347, 348  [c.702]

Адаптивные системы — см. Системы самоприспосабливающиеся Азотирование стали — Свойства азотированных изделий 2.348— 352 — Строение азотированного слоя 2.338, 339  [c.623]

ТАБЛИЦА 73. СВОЙСТВА ИНСТРУМЕНТАЛЬНОЙ СТАЛИ, содержащей 2,05% с, 12% Сг, 2% V. 0,8% Мо, ПОСЛЕ АЗОТИРОВАНИЯ В СОЛЯНОЙ ВАННЕ ПРИ 570 °С  [c.201]

ТАБЛИЦА 75. МЕХАНИЧЕСКИЕ СВОЙСТВА ИНСТРУМЕНТАЛЬНОЙ СТАЛИ МАРКИ К1 ПОСЛЕ АЗОТИРОВАНИЯ В СОЛЯНОЙ ВАННЕ ПРИ ТЕМПЕРАТУРЕ 570 °С  [c.202]

ТАБЛИЦА 102. ИЗМЕНЕНИЕ СВОЙСТВ БЫСТРОРЕЖУЩЕЙ СТАЛИ МАРКИ R6 ПОД ВЛИЯНИЕМ АЗОТИРОВАНИЯ, ОСУЩЕСТВЛЯЕМОГО ПРИ ТЕМПЕРАТУРЕ 570 С И ПРИ 540 С В СОЛЯНОЙ ВАННЕ  [c.236]

На фиг. 5, построенной в координатах потенциал — расстояние от поверхности, приведены кривые, показывающие изменение коррозионных и электрохимических свойств нержавеющих сталей по толщине азотированного слоя, построенные по электродным потенциалам, измеренным через 1 час от начала испытаний.  [c.124]

В литературе описаны отдельные наблюдения повышения коррозионной стойкости азотированных нержавеющих сталей, например, при воронении, пассивировании в бихромате натрия, лапин-говании. Однако отдельные замечания об опытах, проведенных с целью повышения стойкости азотированных сталей, встречающиеся в литературе, не могут рассматриваться как конкретные рекомендации по защите этих материалов. Более того, указания литературных источников о снижении коррозионной стойкости нержавеющих сталей являются часто противоречивыми и носят случайный характер. Это обстоятельство вызвано тем, что незнание закономерности распределения стойкой и нестойкой зон не позволяло изготовить образцы с определенными коррозионными свойствами.  [c.128]

Рассмотрена деградация механических свойств конструкционных сталей в условиях действия технологических и эксплуатационных (температура, давление, среда и т.п.) факторов охрупчивания. Приведены механические, структурные и фрактографические особенности развития и обнаружения таких эксплуатационных видов охрупчивания, как наклеп, деформационное, тепловое водородное и радиационное охрупчивание, водородная коррозия, графитизация, науглероживание, азотирование и другие. Впервые приведены диагностические карты опознания видов хрупкости, выявляемых разрушающими и неразрушающими методами диагностирования.  [c.2]

Механические свойства азотированных образцов из стали 40  [c.159]


В некоторых случаях для защиты сталей от коррозии применяют азотирование, которое проводят при 650— 750° С в ванне с аммиаком. В результате активные атомы азота проникают в решетку железа и насыщают поверхностный слой, который приобретает белый серебристый цвет. Длительность обработки колеблется от 20 до 180 мин, в зависимости от температуры среды. Свойства азотированного слоя в большой степени зависят от режима охлаждения обработанных изделий. Практически детали охлаждают или в масле, или в атмосфере инертного газа. Последующей термообработкой в пределах 220 450° С можно добиться окрашивания азотированного слоя  [c.173]

Процесс азотирования впервые разработал русский ученый Н. П. Чижевский, опубликовавший с ]907 по 1913 гг. 14 работ, посвященных изучению влияния азота на свойства железа, стали и некоторых других металлов.  [c.150]

Сопоставление величины электродных потенциалов и коррозионных свойств азотированной стали 4Х14Н14В2М при различной глубине  [c.125]

В настояш.ей работе студенты знакомятся с процессом азотиза-аки и свойствами азотированной стали.  [c.134]

Серия IV — влияние V- Ванадий, являясь одним из сильнейших нитридообразователей, значительно повышает азотируемость стали н твердость слоя. При изыскании составов быстроазоти-руемых старей сочетание ванадия с алюминием особенно перспективно. Важно было выяснить, каков вклад ванадия в измене- НИИ свойств азотированного слоя в присутствий алюминия.  [c.191]

Исследование влияния ванадия проводилось н стали с 4% AI и 0,1% С, показавшей наилучшие свойства азотированного слоя. Ванадий добавлялся в количестве 1,0 1,8 и 2,2%. В противоположность молибдену, который в присутствии, алюминия не изменял свойства азотированного слоя, ванадий резко повысил его Характеристики. С повышением содержания ванадия йривес увеличивался (см, рис. 79), причем эффективность влияния ванадия оказалась значительно больше, чем алюминия. Обычно с увеличением легированности стали привес возрастает, а толщина слоя уменьшается. При добавлений ванадия к стали с люминием наблюдалось повышение привеса и толщины слоя при всех температурах азотирования. Значительное увеличение толщины слоя до 0,57 мм получено на стали с 2% V после азотирования при  [c.191]

Особо ценным свойством ванадиевых сталей является то, что азотированный слой имеет высокую микротвердОсть почти по всей глубине. Микротвердость стали с 2% V после азотирования при 620° С, 12 ч выше 1200 кгс/мм фиксировалась на глубине 0,4 мм при общей толщине слоя 0,44 мм, в то время как на сплаве с 6% А1 при толщнне слоя, равной 0,3i6 мм, микротвердость выше 1200 кгс/мм получена всего лишь на Глубине 0,1тлм. На ванадиевой стали при работе на износ практически весь слой будет одинаково надежен.  [c.192]

Антикоррозийное азотирование стали 7 — 521 Антипараллелограм шарнирный 2 — 75 Антисептики для древесины 4 — 278 Антифрикционная кривая — см. Трактрисса Антифрикционные материалы металлокерамические — Физико-механические свойства 4 — 257  [c.13]

Наличие в азотированных конструкционных сталях N1, а также небольших количеств Сг, Мо, объясняется необходимостьаэ увеличения прокаливаемости стали и ее механических свойств. Специально для азотирования выпускается лишь несколько марок стали. Основное же количество подвергаемых азотированию сталей — это обычные стали, широко применяемые для различных назначений.  [c.167]

М о и с е е в А. Д., Влияние азотирования на эрозионные свойства малолегированной стали, применяемой для рабочих органов паросилового оборудования, Вестник машиностроения , 1954, № 4, стр. 61—65.  [c.91]

Низколегированные стали также можно паять всеми известными способами. Затруднения в процессе пайки встречаются только в тех случаях, когда легирующие элементы, например алюминий или хром, образуют на поверхности стали хи.мически устойчивые окислы. В этом случае применяют более активные флюсы, а магнитные стали, содержащие алюминий, перед пайкой предварительно обрабатывают в растворе NaOH для удаления плотной пленки окислов алюминия, В качестве газовой среды при пайке используют азот или аргон в смеси с трехфтористым бором. При этом следует иметь в виду возможность поверхностного азотирования стали в процессе пайки, что при небольших толщинах (менее 1 мм) может привести к повышению прочности и снижению пластичности стали. При пайке закаленных низколегированных сталей следует иметь в виду возможность огжнга в процессе пайки и, следовательно, снижения их механических свойств. Во избежание этого пайку ведут при температуре высо-  [c.234]


При ремонтной сварке жаростойких сталей аустенитизация может оказаться не всегда эффективной. Если охрупчивание обусловлено сильным науглероживанием или азотированием стали или сплава, аустенитизация не приведет к заметному повышению пластичности основного металла. На рис. 69 приведены макро-и микрофотографии, относящиеся к ремонтной сварке аустенитной стали, сильно науглероженной в процессе эксплуатации. Из стали ЗХ18Н25С2 были изготовлены цементационные ящики. После 10 ООО ч эксплуатации при 800° С содержание углерода в стали достигло 1,48% при 0,12% N и она приобрела большую хрупкость. При заварке сквозных трещин рядом со швом образовались новые трещины. В подобного рода случаях следует применять электроды, дающие металл шва повышенной пластичности, например типа 18-8 или 25-12. При ремонтной сварке жаростойких сталей и сплавов нет нужды особенно заботиться о жаропрочности металла шва. Важно, чтобы сварка не вызвала новых трещин, а шов обладал приемлемой жаростойкостью. Итак, главные условия ремонтной сварки аустенитных сталей и сплавов, утративших пластические свойства в процессе высокотемпературной эксплуатации, сводятся к предварительной аустенитизации и использованию электродов, дающих податливый наплавленный металл.  [c.357]

Ионное азотирование по сравнению с азотированием в печах позволяет сократить общую продолжительность процесса в два-три раза, уменьшить деформацию деталей за счет равномерного нагрева, создает возможность регулирования процесса в целях получения азотированного слоя с заданными свойствами. Азотирование коррозионно-стойких сталей и сплавов достигается без дополнительной депассивирующей обработки. Достигается толщина азотированного слоя 1 мм и более, твердость поверхности — 500-1500 HV. Ионному азотированию подвергают детали насосов, форсунок, ходовые винты станков, валы и многое другое.  [c.226]

Основные причины благоприятного действия кратковременного азотирования на коррозионно-усталостную прочность стали заключаются в высоких антикоррозионных свойствах азотированного слоя стали и в возникновении в этом слое значительных остаточных напряжений сжатия (порядка 30—40 кПмм ).  [c.153]

Высокое сопротивлеШ Ю коррозионно-усталостном разрушению кратковременно азотированной стали объясняется двумя причинами 1) боль-пшми (30 /сг/лл ) остаточными напряжениями сжатия в азотированном слое и 2) высокими антикоррозионными свойствами (отсутствие пор, высокий электродный потенциал) азотированной поверхности, особенно в водопроводной воде.  [c.173]

V/ Азотирование. Азотированием называется насыщение поверхности стали азотом. Основоположником азотирования стали является русский ученый проф. Н. П. Чижевский, который впервые исследовал и применил этот процесс. Для азотирования используют аммиак ЫНз. Сущность азотирования заключается в том, что аммиак при температуре 500—750° С разлагается на азот и водород, и активные атомы азота (атомарный азот), диффундируя в поверхностный слой, сообщают поверхности стали большую твердость, не влияя на механические свойства сердцевины деталей. В промышленности для изготовления деталей, подлежащих азотированию, в настоящее время широко применяют сталь марки 35ХМЮА или ее заменитель 35ХВФЮА. После окончательной механической обработки детали закаливают от температуры 960° С с охлаждением в воде или в масле и подвергают отпуску при 600° С также с охлаждением в воде или в масле. Затем детали азотируют. Продолжительность азотирования от 12 до 60 и даже до 90 часов в зависимости от требуемой толщины азотированного слоя и характера процесса.  [c.135]

Нельзя не учитывать и заметных различий свойств быстрорежущей стали и соединений тугоплавких металлов, формирующих покрытие. Положительные результаты может дать термическая обработка на повышенную твердость, а также увеличение радиуса скругления режущих кромок до 5—10 мкм методами виброабразивной и гидровиброабразивной обработок. Необходимы также-коррективы геометрии режущей части инструмента. Например увеличение угла заострения режущей части до 85° вместо обычных 75—80° при одновременном снижении переднего угла и росте угла наклона режущих кромок способствует уменьшению вероятности отпуска локальных объемов быстрорежущей стали непосредственно у режущей кромки. Чтобы не происходило отслаивания и разрушения покрытий (из-за значительного различия коэффициентов термического расширения материала покрытия и материала инструмента — быстрорежущей стали), необходимо создание промежуточных слоев между ними. Наличие переходного слоя с промежуточными свойствами способствует снижению критических напряжений растяжения и увеличению длительности работы покрытия без разрушения. В этом случае эффективной является комплексная обработка поверхности инструмента из быстрорежущей стали, например совмещение процессов-нанесения покрытия и предварительного ионного азотирования.  [c.184]

Строение и свойства азотированного слоя. Насыщение стали азотом, как мы видели, приводит к большим структурным изменениям в поверхностном слое (см. рис. 171). На рис. 177 показана микроструктура азотированного слоя, полученного на стали 38ХМЮА. На поверхности мы видим белый слаботра-вящийся слой, представляющий собой наиболее богатую азотом е-фазу. Содержание азота в этом слое — 9—11%. Непосредственно за -фазой следует а-фаза, сопровождающаяся на некоторой глубине у фззой и дисперсными нитридами легирующих элементов (алюминия, хрома и молибдена), которые не обнаруживаются микроанализом. Эта часть слоя в стали 38ХМЮА имеет характерное сорбитообразное строение и отличается от сердцевины лишь тем, что более сильно травится вследствие высокого содержания азота.  [c.224]

Одним из наиболее ценных эксплуатационных свойств азотированного слоя является высокая сопротивляемость износу. Сопротивление износу азотированной стали значительно превышает износоустойчивость цементированной и закаленной поверхности. Даже после кратковременного азотирования с целью защиты от коррозии сопротивление механическому износу возрастает в 3—4 раза по сравнению с неазотированной сталью.  [c.225]


Легированными сталями называются стали, содержащие в своем составе, кроме обычных элементов, еще и специальные примеси хром, вольфрам, кобальт, никель, ванадий, молибден, титан, алюминий и медь — или же имеющие увеличенное содержание марганца и кремния. Каждый из легирующих элементов в отдельности сообщает стали особые свойства. Например, хром способствует уменьшению зерна, увеличивает прочность, твердость, износостойкость, жаростойкость, стойкость, против коррозии и прокаливаемость стали. Никель повышает прочность, вязкость, жаростойкость и сопротивляемость коррозии. Вольфрам придает стали красностойкость и увеличивает прокаливаемость стали. Молибден повышает прочность, твердость и жароустойчивость, но снижает пластичность и вязкость. Кобальт повышает прочность и пластичность. Кремний при содержании его свыше 0,8% повышает упругость, прочность и твердость, но снижает ударную вязкость. Л1арганец при содержании свыше 1 % повышает прочность и твердость, увеличивает прокаливаемость и несколько снижает ударную вязкость. Титан придает сталям твердость и способствует образованию мелкозернистой структуры. Алюминий повышает жароустойчивость и способствует созданию хороших условий для азотирования стали. Медь повышает устойчивость против коррозии и против действия кислот.  [c.15]

Изделия перед азотированием подвергаются предварительной термической обработке для получения требуемых механических свойств. Например, сталь 38ХМЮА обрабатывается по следующему режиму температура закалки 950 + 10°, охлаждение через  [c.76]


Смотреть страницы где упоминается термин Свойства азотированной стали : [c.86]    [c.287]    [c.184]    [c.193]    [c.198]    [c.167]    [c.327]    [c.236]    [c.19]    [c.191]    [c.310]    [c.169]    [c.161]    [c.166]    [c.212]    [c.246]   
Смотреть главы в:

Справочник металлиста Том2 Изд3  -> Свойства азотированной стали



ПОИСК



Азотирование стали — Свойства азотированных изделий

Азотирование стали — Свойства азотированных изделий 2.348352 — Строение азотированного

Стали азотируемые

Стали азотируемые механические свойства конструкцией

Структура и свойства азотированной легированной стали



© 2025 Mash-xxl.info Реклама на сайте