Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние облучения на структуру и механические свойства

Влияние облучения на структуру и механические свойства  [c.517]

В делящихся материалах влияние радиационного облучения более заметно, так как в этом случае поглощаются и оказывают влияние на структуру и механические свойства не только быстрые, но и медленные нейтроны, которые, как правило, на неделящиеся металлы не действуют. Эффект теплового воздействия в делящихся металлах также во много раз выше. Например, в процессе облучения урана сильно возрастают его пластичность и ползучесть, после же него повышается твердость, а прочность и вязкость уменьшаются. Пластичность урана после радиационного облучения теряется полностью.  [c.209]


В последнее время все большее внимание уделяется изучению влияния, оказываемого наложением электрического, магнитного и ультразвукового полей, а также ядерным облучением на структуру и свойства металлов и сплавов в твердом состоянии. В ряде случаев, комбинируя несколько методов обработки с легированием, стремятся использовать различные механизмы превращений и получить металлы и сплавы с необходимыми структурой и свойствами. Так, для упрочнения металлов и сплавов сочетают следующие виды обработки термическую и механическую (термо-механическая обработка), термическую и магнитную (термо-магнитная обработка), термическую, механическую и магнитную (термо-механико-магнит-ная обработка), термическую и ультразвуковую (термо-ультразву-ковая обработка), химико-термическую и ультразвуковую (термо-химико-ультразвуковая) и др.  [c.216]

И. В. Батенин и др. [36] исследовали влияние облучения на механические свойства металлов. После облучения микротвердость всех исследованных металлов и сплавов повысилась. Однако относительное изменение твердости было неодинаковым для различных материалов. Авторами высказано предположение, что при нейтронном облучении упрочнение связано не только с возникновением дисперсной структуры зерна, но и с изменением свойств кристаллов в микрообластях, повышением сопротивления движению дислокаций. Изменение свойств в случае облучения обусловлено наличием точечных дефектов (типа вакансия — внедренный атом ) и характером их распределения.  [c.238]

Кратко обобщены результаты работ по исследованию структур металлов методом микротвердости. Рассмотрены основные направления применения метода микротвердости для исследования металлов. Приведены экспериментальные данные, подтверждающие целесообразность применения метода микротвердости в целях физико-химического анализа, в области технологии металлов и металловедения, для изучения пластической и упругой деформации металлов и сплавов при механической обработке. Особое внимание обращено на изучение влияния облучения на физико-химические и механические свойства металлов. Описана аппаратура, применяемая для исследовательских работ в агрессивных средах.  [c.264]

Можно указать на несколько факторов, вызывающих появление подобных дефектов. К ним относятся в первую очередь кинетические факторы, связанные с тем, что кристалл не успевает стать идеальным в процессе кристаллизации и последующей обработки. Далее следует указать, что при не слишком низких температурах из-за конкуренции энергетического и энтропийного факторов присутствие в кристалле некоторого количества дефектных мест будет отвечать термодинамическому равновесию. Наконец, уже созданные идеальные кристаллы могут оказаться испорченными под влиянием факторов (механической обработки, действия радиации), нарушающих строгую периодичность расположения атомов. По этим причинам реальные кристаллы имеют дефекты, и физические свойства кристалла формируются под совместным действием строгой периодичности и отступлений от нее. Можно привести немало примеров, свидетельствующих о важности учета вклада дефектов в формирование свойств материалов. Так, без учета этого вклада оказалось невозможным построение теории прочности и пластичности материалов, поскольку эти характеристики определяются степенью сопротивления тела действию сил, смещающих разные части тела относительно друг друга. Под действием радиации (мощные световые потоки, пучки электронов, нейтронов, заряженных ядер и т. д.). отдельные атомы или группы атомов оказываются выбитыми из своих правильных положений, и поэтому структура и свойства облученных материалов необъяснимы без оценки роли дефектов и т. д. В связи с этим важной составной частью физики твердого  [c.228]


Создание технологии лазерной обработки основывается на последовательном анализе множества факторов. Исходным фактором является марка инструментальных сталей и сплавов. Затем оценивают влияние лазерного воздействия на изменение структуры, элементного и фазового состава модифицируемого материала. На следующем этапе устанавливается влияние лазерного облучения на изменение механических и триботехнических свойств. При разработке технологического процесса лазерной обработки, кроме того, учитывают изменение шероховатости обрабатываемой поверхности и теплостойкость инструментальных материалов.  [c.259]

Практическое использование атомной энергии привело к возникновению проблемы материалов для нового и чрезвычайно сложного оборудования ядерных реакторов. До появления этой проблемы металловедов интересовали такие обычные вопросы, как улучшение механических и физических свойств, применимость материалов в условиях все более высоких температур, изучение способов повышения коррозионного сопротивления в различных газовых и жидких средах, возможность предсказывать поведение материалов на основе знания их структуры. С развитием атомной техники к этим проблемам добавилось влияние облучения частицами высоких энергий на свойства материалов.  [c.233]

При выборе конструкционных материалов для оболочек твэлов, корпуса, технологических каналов атомных реакторов основным критерием в большинстве случаев являются их механические свойства. И это понятно, поскольку при облучении материала нейтронами до интегральной дозы 2-10 см каждый атом решетки испытывает более 100 смещений. При этом существенно изменяются структура и физико-механические свойства материалов. Облучение вызывает повышение пределов текучести и прочности, снижение ресурса пластичности, увеличение критической температуры перехода из хрупкого в вязкое состояние, размерные изменения за счет радиационного роста, ползучести и распухания. Вследствие ядерных реакций в материалах образуется большое количество газообразных примесей (гелий, водород), наличие которых в объеме приводит к возникновению таких явлений, как водородная хрупкость, гелиевое охрупчивание, газовое распухание. Существенное влияние на механические свойства материалов оказывают негазовые продукты ядерных превращений, которые могут выделяться в количествах, больших предела растворимости, и тем самым изменять фазовое состояние материалов [1, 2].  [c.54]

Теория дислокаций впервые объяснила причину огромного различия теоретически рассчитанной прочности кристаллов с совершенной структурой и экспериментально определяемой прочности дефектных кристаллов. И. А. Одингом еще в конце 50-х годов была предложена гипотетическая зависимость прочности кристаллов от плотности дефектов, в частности дислокаций в кристаллах, в соответствии с которой один из путей повышения прочности, сопротивления сдвигу состоит в увеличении плотности дефектов решетки и их оптимального распределения в объеме материалов. Поскольку облучение быстрыми частицами является мощным способом создания целого комплекса дефектов решетки, оно и должно оказывать существенное влияние на механические свойства кристаллических тел.  [c.60]

Радиационная стойкость — это стабильность структуры и свойств в условиях облучения. Наибольшее влияние структурные изменения от облучения оказывают на механические свойства и коррозионную стойкость.  [c.517]

Влияние поглощенной интегральной дозы радиации на механические свойства полимера — кремнийорганической резины — показано на рис. 8-1. Видно, что при увеличении поглощенной дозы прочность немного увеличивается, а относительное удлинение уменьшается и материал по получении достаточной дозы полностью теряет эластичность. На рис. 8-2 дана зависимость растворимости, а на рис. 8-3 — набухания полиэтилена от дозы радиации эти графики иллюстрируют образование сетчатой структуры при облучении полиэтилена.  [c.302]

При облучении электронами или нейтронами в кристаллических металлах и сплавах в больших количествах образуются вакансии и поры, что приводит к снижению их пластичности. В этой связи понятна важность изучения влияния облучения на механические свойства аморфных металлов. Обратимся к табл. 8.3 [29]. В ней приведены значения некоторых механических свойств аморфного сплава PdsoSiao ДО и после облучения нейтронами (доза облучения составляла 5-10 нейтронов на 1 см ). Напряжение разрушения и предельное удлинение, в отличие от кристаллических металлов, почти не изменяются при облучении. Однако модуль Юнга после облучения уменьшается на 10%, что вызывает увеличение упругой деформации. Это же является причиной так называемого разупрочнения . В работе [30], по- таблица 8.3. Влияние облучеян свяш,енной изучению влияния облучения нейтронами на структуру аморфных сплавов, указывается, что при облучении, предположительно, происходит увеличение свободного объема и нарушение ближнего порядка. Однако в целом можно считать, что аморфные металлы по сравнению с кристаллическими Обладают превосходной стойкостью по отношению к нейтронному облучению.  [c.241]


Радиационное облучение ядерными частицами оказывает влияние на структуру и свойства металлов и сплавов, особенно быстрыми нейтронами, не взаимодействующими с электронами и потому глубоко проникающими в кристаллическую решетку металла. Под влиянием облучения быстрыми нейтронами в металле происходит ионизация атомов и образуется большое число кристаллических несовершенств и областей с локально высоким выделением тепла. Ядерное облучение оказывает значительное влияние на атомнокристаллическое строение металлов, в результате чего меняются их физико-механические свойства твердость и прочность повышаются, а пластичность и вязкость снижаются. Например, по данным С. Т. Конобеевского, Н. Ф. Правднэка и В. И. Кутайцева, сильное облучение быстрыми нейтронами повышает твердость и предел прочности при растяжении железа-армко, алюминия, никеля и меди особенно заметен рост Ов у железа-армко и никеля. У нержавеющей стали сильно возрастает величина предела текучести, приближаясь  [c.208]

Характерной особенностью дефектной структуры облученных кристаллов являются хаотичность в расположении точечных и объемных барьеров и неоднородность создаваемых ими полей напряжений. Но нельзя считать распределение дефектов в кристаллах изотропным. На начальной стадии облучения кристаллов наблюдается сильная анизотропия в распределении радиационных дефектов и анизотропия влияния радиации на механические свойства в )азличных кристаллографических направлениях. О. А. Троицкий 151 на монокристаллах цинка обнаружил в плоскостях базиса более высокую скорость накопления радиационных дефектов и большее влияние радиации на сопротивление движению дислокаций в базисных плоскостях по сравнению с другими кристаллографическими плоскостями. В. К. Крицкая с сотрудниками [16] по изменению интегральных интенсивностей рентгеновских рефлексов обнаружила ориентационную зависимость в распределении радиационных дефектов в облученных электронами монокристаллах молибдена и как следствие — анизотропию величины эффекта повышения сопротивления деформированию в различных кристаллографических направлениях монокристаллов молибдена.  [c.63]

С помощью метода меченых атомов Проблемная лаборатория износостойкости зубчатых передач (радиоизотопная) Рижского политехнического института в настоящее время определяет реальные границы контактно-гидродинамического (без-ызносного) режима работы среднескоростных тяжелонагру-женных зубчатых передач. Для эвольвентных прямозубых передач избранного типоразмера в первую очередь определяются величины предельных нагрузок по изнашиванию и заеданию испытуемых зубчатых колес, характерные скорости изнашивания за пределами безызносного режима, зависимость предельных нагрузок от скорости вращения, температуры зубчатых колес и поступающего в зацепление масла, влияние на величину предельных нагрузок и на характер процессов изнашивания различных сортов смазочных масел и присадок к ним, влияние кратковременных перегрузок на приработку, изнашивание и заедание зубчатых передач, зависимость процессов приработки от режима нагружения (при кратном и некратном отношении числа зубьев шестерни и колеса). Исследуются также изменения механических свойств и структуры поверхностного слоя сталей при изнашивании и нейтронном облучении. Закончен цикл испытаний зубчатых передач Новикова с одной и с двумя линиями зацепления.  [c.268]

Радиационные дефекты оказывают влияние на механические свойства, по изменению которых оценивают радиационную стойкость конструкционных материалов. Для большинства металлов механические свойства начинают заметно изменяться при флюенсах быстрых нейтронов F больше 10 нейтр/см (инкубационная доза облучения). Степень изменения механических свойств зависит от прочности мен<атомной связи, типа кристаллической решетки, содержания примесей и характера легирования, структуры в исходном состоянии (табл. 8.44, 8.45) и условий облучения (температуры, дозы и др.). При этом можно отметить ряд типичных закономерностей. Кривая напряжение — деформация при одноосном растяжении под действием облучения смещается вверх на более высокий уровень напряжений (рис. 8,1). В наибольшей степени повышается предел текучести, что часто сопровождается поянлепие.м зуба и площадки текучести. Наибольший прирост предела  [c.300]

В связи с применением аустенитных сталей в атомной промышленности были проведены исследования влияния радиоактивного излучения на стабильность структуры этих сталей. Установлено, что под действием радиоактивного излучения оба процесса распада аустенита у а, А М) заметно ускоряются, особенно в сталях типа 18-8, содержащих ниобий [4, 8, 40, 43]. С. Т. Конобеевский и др. установили, что нейтронная бомбардировка не вызывает распада аустенита в стали 1Х18Н9Т, но прочность стали повышается, а пластичность падает. Данные о влиянии нейтронного облучения на механические свойства хромоникелевой аустенитной стали и сплавов типа инконель приведены в табл. 8.  [c.33]

Влияние солнечной или искусственной радиации на органические покрытия может проявляться как в ухудшении физико-механических свойств пленки, так и в изменении ее цвета. В случае пигментированых покрытий протекание этих процессов в значительной степени зависит от соотношения свойств пленкообразователей и пигментов, образующих данную покровную пленку. Так, например, фотоокислительная деструкция одной и той же пленкообразующей основы при одинаковых условиях облучения может быть усилена в присутствии цинкосодержащих пигментов и замедлена под влиянием алюминиевого пигмента [33]. Это объясняется тем, что цинк является сравнительно интенсивным сенсибилизатором фотохимической деструкции полимеров, в то время как алюминиевый пигмент, имеющий плоскочешуйчатую структуру, хорошо отражает наиболее активную ультрафиолетовую часть излучений.  [c.78]


В технике материалы используются при колеблющихся температурах. В одних случаях температурные колебания невелики и ими пренебрегают. В других — изменения структуры, свойств и размеров материалов настолько значительны, что дальнейшее использование их оказывается невозможным. Накапливаясь от цикла к циклу, эти изменения могут быть причиной преждевременного разрушения. Особенно опасен рост объема металлов, сопровождающийся накоплением пор и трещин. Структурная и размерная стабильность материалов снижается, если на чисто термическое воздействие накладывается влияние механических нагрузок (термомеханическая усталость), взаимодействие с агрессивной средой (термохимическая усталость), облучение частицами (терморадиацпонная усталость). Сопротивление термической усталости является важной характеристикой многих материалов современной техники.  [c.3]


Смотреть страницы где упоминается термин Влияние облучения на структуру и механические свойства : [c.67]    [c.233]    [c.9]    [c.137]    [c.218]    [c.221]   
Смотреть главы в:

Материаловедение  -> Влияние облучения на структуру и механические свойства



ПОИСК



141 — Влияние на свойства

Влияние облучения на механические свойства

Влияние облучения на свойства тел

Облучение

Облученность

Свойства с а-структурой



© 2025 Mash-xxl.info Реклама на сайте