Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиционные материалы на металлической основе

В настоящее время все большее внимание уделяется композиционным материалам на металлической основе, армированной высокомодульными углеродными волокнами. Совместимость армирующего компонента и матрицы в некоторых случаях достигается введением связующего, функцию которого выполняет покрытие. Металлические покрытия необходимы в тех случаях, когда матрица не смачивает поверхность углеродных волокон при температурах получения композиции (алюминий, магний [21), Кроме того, покрытие углеродных волокон такими металлами, как цинк и медь, может впоследствии служить основой или компонентом основы композиционного материала [3].  [c.129]


Рис. 114. Схематическое изображение особенностей строения некоторых основных типов композиционных материалов на металлической основе (I группа — волокнистые и дисперсионно-упрочненные материалы II группа — биметаллы и многослойные плакированные металлические материалы). Рис. 114. <a href="/info/286611">Схематическое изображение</a> <a href="/info/729858">особенностей строения</a> некоторых основных <a href="/info/762059">типов композиционных</a> материалов на <a href="/info/336545">металлической основе</a> (I группа — волокнистые и <a href="/info/544402">дисперсионно-упрочненные</a> материалы II группа — биметаллы и многослойные плакированные металлические материалы).
Механические свойства композиционных материалов на металлической основе  [c.424]

Композиционные материалы на металлической основе обладают высокой прочностью (Пв. О-г) и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исключают внезапное  [c.424]

Получение композиционных материалов на металлической основе, армированных волокнами  [c.272]

На околоземной орбите конструкции летательных аппаратов подвергаются воздействиям термического и ионного излучения, глубокого вакуума и т.д. Например, конструкция международной космической станции за период эксплуатации (около 30 лет) должна будет выдержать около 175 тыс. циклов термического нагружения от +125 до -125 °С при движении станции на околоземной орбите [2]. Жесткие условия эксплуатации приводят к необходимости создания легких и высокопрочных конструкций летательных аппаратов, обладающих высокой пространственной стабильностью. Именно композиционные материалы на металлической основе с их высокой удельной жесткостью и низким коэффициентом термического расширения обладают необходимыми характеристиками для создания таких конструкций.  [c.224]

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА МЕТАЛЛИЧЕСКОЙ ОСНОВЕ  [c.866]

Стали и сплавы со специальными свойствами. Композиционные материалы на металлической основе S69  [c.869]

Система сертификации металлопродукции и композиционных материалов на металлической основе  [c.302]

Композиционные материалы на металлической основе  [c.464]

Основа матрица) композиционного материала может быть металлической (композиционные материалы на металлической основе) и неметаллической (композиционные материалы на неметаллической основе). В качестве металлической основы широко применяют алюминий, магний, никель, титан, сталь. Неметаллическая основа может быть полимерной, углеродной, керамической.  [c.147]


При интенсивных режимах трения значительно возрастают поверхностная и объемная температуры. Как известно, у многих материалов с ростом температуры сильно изменяются теплофизические характеристики (рис. 7.13). Например, для многих металлов и композиционных материалов на металлической основе при объемной температуре 9 = 300...400 °С эти изменения могут достигать 30...40 %.  [c.262]

Волокнистые композиционные материалы на металлической основе с дискретным и непрерывным наполнителями принцип их получения, свойства, достоинства и недостатки в сравнении с чистыми металлами или сплавами, области применения.  [c.25]

Дисперсно-упрочненные композиционные материалы на металлической основе принцип их получения, упрочняющие частицы композита, свойства, области применения.  [c.26]

Композиционные материалы на металлической основе обладают высокой прочностью (а , а 1) и жаро-  [c.299]

Предполагается использование композиционных материалов на никелевой основе для длительной работы при температурах выше 1000° С. Однако разработка таких материалов затруднена из-за отсутствия упрочнителей, которые могли бы без потери прочности длительно работать в контакте с никелевой матрицей. Из металлических упрочнителей с точки зрения совместимости с никелевой матрицей лучшей пока остается вольфрамовая проволока, обеспечиваюш,ая довольно высокие значения длительной прочности в композиционных материалах на основе никелевых сплавов. Характеристики прочности и длительной прочности некоторых композиций приведены в табл. 18—22 и 61. Из таблиц видно, что введение вольфрамовой проволоки в количестве 40— 70 об. % позволяет получить материал с длительной (100-часовой) прочностью при 1100° С, равной 13—25 кгс/мм . Основными недостатками этих материалов является высокая плотность и необходимость защиты от окисления при высоких температурах. В этой же таблице приведены свойства композиции никель—углеродное волокно. Композиция привлекательна своей невысокой плотностью. Однако прочность ее невелика, и композиция не может работать длительно при температурах выше 1000° С из-за взаимодействия волокна с матрицей.  [c.217]

Как известно, имеются две принципиально различные возможности достижения высокой прочности одна, традиционная,— улучшение различными способами прочности пластичных металлических сплавов другая, получившая развитие в последнее время,— создание композиционных материалов на металлической или неметаллической основе, армированной волокнами (дискретными — нитевидными кристаллами или непрерывными) часто не пластичных и неметаллических соединений.  [c.284]

Волокнистые композиционные материалы. В волокнистых композиционных материалах упрочнителем служат углеродные, борные, синтетические, стеклянные и др. волокна, нитевидные кристаллы тугоплавких соединений (карбида кремния, оксида алюминия и др.) или металлическая проволока (стальная, вольфрамовая и др.). Свойства материала зависят от состава компонентов, количественного соотношения и прочности связи между ними. Для металлических композиционных материалов прочная связь между волокном и матрицей достигается благодаря их взаимодействию. Связь между компонентами в композиционных материалах на неметаллической основе осуществляется с помощью адгезии. Повышение адгезии волокон к матрице достигается их поверхностной обработкой. Производится осаждение нитевидных кристаллов на поверхность волокон. При этом получаются  [c.263]

Область применения композитных материалов на полимерной основе постоянно расширяется. Конструкции из полимерных композитов используются в качестве несущих элементов и деталей машин, летательных аппаратов, водных и наземных транспортных средств, протезирующих систем, продолжается внедрение полимерных материалов в строительство и мелиорацию. Важное место занимают они среди конструкционных материалов новых видов техники. Постепенное вытеснение полимерными композитами классических конструкционных материалов (древесины, сталей, металлических сплавов и обычных видов керамики) обусловлено сочетанием в них целого ряда практически важных качеств. Во-первых, это высокие удельные значения деформативных и прочностных характеристик, реализованные в таких широко известных современных композиционных материалах на полимерной основе, как стекло-, угле-, боро- и органопластики. Во-вторых, химическая и коррозионная стойкость, а также широкий спектр электрофизических и тепловых свойств полимерных композитов. В-третьих, их высокая экономическая эффективность как материалов, производимых из дешевых видов сырья. Наконец, высокая технологичность полимерных композитов при применении их в габаритных изделиях различных геометрических форм. По совокупности всех этих показателей композиционные материалы на полимерной основе успешно конкурируют с классическими конструкционными материалами.  [c.8]


С тех пор не было разработано новых композиционных инструментальных материалов на металлической основе, обладающих более высокими физико-ме-ханическими свойствами. Видимо, дальнейшие возможности композиционной разработки новых составов металлических инструментальных материалов ограничены или даже исчерпаны.  [c.16]

Детали двигателя работают в более напряженных температурных режимах, чем элементы планера. Температура вентилятора и передних ступеней компрессора изменяется в пределах от окружающей температуры до 150° С, достигая в задней зоне компрессора 650° С. В указанном диапазоне температур возможно использование большого числа композиционных материалов как полимерных, так и металлических. По-видимому, наиболее эффективно применение композиционных материалов на основе металлических и термостойких полимерных (в частности, полиимидных) матриц, упрочняемых борными или углеродными волокнами. Было обнаружено, что наносимое на борные волокна покрытие карбида кремния исключает взаимодействие между наполнителем и алюминиевой или титановой матрицами в процессе изготовления материала. Рассматривается применение полимерных композиционных материалов (как полиимидных, так и эпоксидных) в корпусах двигателя и редуктора (коробки скоростей).  [c.55]

Для некоторых типов лопаток, изготовляемых из композиционных материалов на основе металлических матриц, формирование хвостовой оконечности может быть отдельной операцией. После присоединения (приваривания) металлических клиньев или накладок к композиционному материалу необходима дополнительная механическая обработка для придания заготовке внешнего контура ласточкиного хвоста или елочки . В развернутых программах, обеспечивших разработку замков лопаток удовлетворительных конструкций, проводились испытания на ползучесть, в процессе которых проверялось удлинение лопаток в зависимости от продолжительности действия напряжений при заданной температуре.  [c.63]

Широкие масштабы приобрело использование в качестве арматуры для композиционных материалов тонких металлических проволок. В сравнении с нитевидными кристаллами это объясняется более низкой стоимостью их производства, однородностью получаемых на их основе композиционных материалов и возможностью изготовления из них полуфабрикатов в виде сетки или каркаса.  [c.122]

В массе своей (Композиционные материалы с волокнистой арматурой и металлической матрицей еще не вышли за рамки лабораторных исследований опытно-промышленного использования. Но некоторые из них уже применяются в практических целях свинец, серебро и алюминий армируют стальной проволокой, алюминий — стекловолокном, медь — вольфрамовыми волокнами. Объем производства композиционных материалов на основе пластиков и стекловолокна достиг завидной величины, а о масштабах производства железобетона и говорить е приходится.  [c.129]

В книге рассматривается широкий круг вопросов, связанных с технологией изготовления, анализом свойств и применением углепластиков. В гл. 1 дана общая характеристика углепластиков. В гл. 2 обсуждаются методы изготовления и свойства углеродных волокон, в гл. 3 - свойства полимерных матриц для получения углепластиков. Гл. 4 посвящена свойствам углепластиков, гл. 5 - методам расчета этих свойств. В гл. 6 даны примеры разнообразного применения углепластиков — от предметов быта до космических аппаратов. В гл. 7 рассматриваются композиционные материалы на основе углеродных волокон и металлических  [c.7]

Система сертификации металлопродукции и композиционных материалов на металлической основе. Знак-ГОСТ Р РОСС RU.0001.044M00 АО (Сапем - Сертификат) 18.07.94  [c.240]

Волокнистые композиционные материалы на металлической основе имеют более высокие характеристики, зависящие от свойств матрицы. В качестве матрицы используются металлы, имеющие небольшую плотность (алюминий, магний, титан), их сплавы, а также никель для создания жаропрочных материалов. В качестве упрочнителя используют стальную проволоку (наиболее деше-  [c.264]

Основание для разработки - результаты фундаментальных исследований процесса прокатки алмазосодержащих композиционных материалов на металлической основе. Разработан технологический процесс непрерывного формования из порошка тонких (менее 0,15 мм) пористых заготовок в виде лент и пластин. При последующей термомеха-нической обработке достигаются физико-механические показатели,обеспечивающие воэможность применения фольг для изготовления отрезных кругов и сменных покрытий притиров. Разработаны техцроцессы бесконтактной вырезки и правки кругов с использованием электро зических методов.  [c.40]

Данные табл. 1 свидетельствуют о повышении удельного модуля упругости композиционного материала вследствие упрочнения волокнами. Удельный модуль упругости борного волокна примерно в 6 раз выше, чем у любых стандартных конструкционных металлов, включая стали, алюминий, молибден, медь, магний, что является следствием более жесткой ковалентной связи по сравнению с металлической. Жесткость металлической связи, в свою очередь, более высокая, чем жесткость в органических смолах. В то время как материалы с металлической связью имеют удельный модуль упругости 2500 км, наиболее типичный уровень этой характеристики для материалов на основе органической смолы составляет около 250 км. Из-за низкой жесткости смол композиционные материалы на их основе имеют низкий модуль упругости в направлении, перпендикулярном направлению укладки Болох на, и малый модуль сдвига. Преимущество однонаправленного боралюминиевого композиционного материала в отношении жесткости распространяется и на материал с волокнами, уложенными в различных направлениях, поскольку волокна, не ориентированные в направлении действия главных напряжений, вносят значительный вклад в величину модуля упругости материала в этом направлении.  [c.422]


Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]

Итак, мы рассмотрели композиционные материалы на основе металлической матрицы. Заметим, что их- принято подразделять на три основных класса дисперсиоино-твердеющие, упрочненные частицами (дисперсно-упрочненные) и армированные волокнами.  [c.89]

Формование препрегов с использованием металлических штампов. Этим методом прерсуют уложенные вручную в металлическую форму пакеты однонаправленных или тканевых препрегов на основе углеродных волокон. Формование под давлением среди других методов переработки пластмасс имеет наиболее давнюю историю и широко применяется при переработке термореактивных смол. Для получения изделий из композиционных материалов на основе таких смол и углеродных волокон этот метод используется практически без изменений. Можно отметить его следующие характерные особенности  [c.85]

Рассмотренные выше особенности борных волокон явились причиной того, что их применяют главным образом в сочетании с металлическими, в частности алюминиевыми, матрицами. Композиционный материал алюминий — борные волокна формуют прессованием листов пре-прега при температуре выше 500 °С, как при получении металлокомпо-зитов на основе углеродных волокон. Композиционный материал алюминий — борные волокна можно применять при значительно больших температурах, чем композиционные материалы на основе полимерной матрицы. На рис. 8.3 показана зависимость от температуры прочности при растяжении различных композиционных материалов на основе алюминия и борных волокон [8]. Как видно из рисунка, высокая прочность таких  [c.269]

КОМПОЗИТОВ сохраняется даже при температурах выше 400 ° С. На рис. 8.4 приведены характеристики металлокомпозитов при испытании на ползучесть [8]. Как видно из рисунка, при длительном нагружении характеристики материалов снижаются незначительно экспериментальные значения расположены почти параллельно оси времени. В последние годы разработаны новые типы полимерных связующих с высокой теплостойкостью. Однако армированные пластики на их основе, например углепластики, все-таки значительно уступают по теплостойкости композиционным материалам с металлической матрицей.  [c.270]

Реакционная способность при взаимодействии с металлами низка, но смачивание поверхности волокон расш]авами металлов довольно хорошее, поэтому производство композиционных материалов на основе металлической матрицы и волокон из карбида кремния с точки зрения технологии проще, чем производство металлокомпозитов на основе углеродных волокон.  [c.273]

Композиционные материалы на основе волокон из карбида кремния и металлической матрицы. Исследования в этой области в основном посвящены композиционным материалам с алюминиевой матрицей. Это связано с тем, что волокна из карбида кремния имеют близкую к алюминию плотность (2,55 г/см ), а также с тем, что температура плавления алюминия сравнительно низка. Сочетание этих компонентов позволяет пол) ать композиционные материалы с весьма стабильными в широком температурном интервале свойствами. На рис. 8.9 показана зависимость от температуры прочности при растяжении однонаправленного материала на основе алюминия и волокон из карбида кремния, пол) енного методом пропитки волокон в расплаве. Из рисунка видно, что  [c.277]


Смотреть страницы где упоминается термин Композиционные материалы на металлической основе : [c.4]    [c.113]    [c.232]    [c.120]    [c.243]   
Смотреть главы в:

Материаловедение  -> Композиционные материалы на металлической основе



ПОИСК



Композиционные материалы

Композиционные материалы на металлической основе Солнцев)

Композиционные материалы на основе борных волокон и металлической матрицы

Материалы композиционные металлические

Металлическая основа

Металлические материалы

Получение композиционных материалов на металлической основе, армированных волокнами



© 2025 Mash-xxl.info Реклама на сайте