Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие свойства потока со сверхзвуковыми скоростями

ОБТЕКАНИЕ РЕШЕТОК СВЕРХЗВУКОВЫМ ПОТОКОМ 28. Общие свойства потока со сверхзвуковыми скоростями  [c.221]

ОБЩИЕ СВОЙСТВА ПОТОКА со сверхзвуковыми скоростями 223  [c.223]

Движение тел в газах с большими сверхзвуковыми скоростями сопровождается интенсивным аэродинамическим нагреванием обтекаемой поверхности и ее термохимическим и/или термомеханическим разрушением. В общем случае возникает сложная задача совместного решения уравнений газовой динамики с учетом физикохимических процессов в потоке газа и толще материала стенки тела и уравнений движения тела по траектории с переменными коэффициентами аэродинамических сил и моментов, а также с переменными геометрическими размерами и массой. В случае умеренной интенсивности разрушения оказывается возможным существенно упростить проблему, считая обтекание квазистационарным при этом аэродинамические коэффициенты и процесс разрушения поверхности определяются мгновенными значениями параметров движения и состояния тела. Однако и в этом случае задача об изменении формы тела за счет уноса материала в точной постановке содержит в качестве составных элементов несколько самостоятельных задач математической физики (обтекания тела, определения тепловых потоков через пограничный слой, распространения тепла в теле и т.д.) для замкнутых групп уравнений, связанных между собой через граничные условия. Математические свойства таких комплексных задач еще мало исследованы, и обозримые результаты получены лишь при использовании ряда существенно упрощенных математических моделей.  [c.188]


Полученные уравнения (5.42), (5.44), (5.46) эквивалентны и выбор их должен определяться только простотой получения решения. Прежде чем приступить к решению уравнений, сделаем некоторые общие замечания об их свойствах. Все полученные уравнения нелинейны, так как в них искомые функции входят не в первой степени, что, как известно, чрезвычайно затрудняет получение решений. Кроме того, напомним, что согласно определению (5.39) на звуковой линии 5 = О, з < О соответствует дозвуковому, а 5 > О — сверхзвуковому потоку. Тогда легко заметить, что все основные уравнения [например (5.44) ] в дозвуковой области эллиптического типа, а в сверхзвуковой — гиперболического. Это также осложняет решение, так как методы его получения различны для эллиптических и гиперболических уравнений. Следует отметить, что задача о трансзвуковом потоке даже после упрощений остается одной из самых сложных в газовой динамике. Эти замечания касаются сложности решения краевых задач. Некоторые частные решения, имеющие практическую ценность, строятся достаточно просто. Рассмотрим два таких решения, которые позволяют выяснить особенность перехода через скорость звука в сопле Лаваля.  [c.133]

Настоящая книга представляет собой попытку построения цельной термодинамической теории таких течений как в общем виде для газа с произвольным уравнением состояния, так и подробно для ряда приложений применительно к идеальному газу. Наряду с непрерывными течениями рассматриваются также простейшие случаи разрывных течений (адиабатические п тепловые скачки), изучение которых вполне поддается термодинамическому анализу... Большое внимание в книге уделено противопоставлению свойств дозвукового и сверхзвукового потоков и условиям перехода через скорость звука...  [c.330]

Большой теоретический и практический интерес представляет задача о течении газа за скачком уплотнения в случае, если удельные теплоемкости ср, с ) являются постоянными величинами. Хотя такое течение считается частным (идеализированным) случаем движения газа, фиэико-химичсские свойства которого в большей или меньшей степени меняются при переходе через скачок, тем не. менее найденные результаты решения этой задачи дают возможность представить общую качественную картину скачкообразного перехода. Получаемые прн этом в явной форме зависимости, характеризующие изменение параметров газа при переходе через скачок, могут использоваться также для приближенной количественной оценки этих параметров, когда рассматривается более общий случай переменных теплоемкостей. Наконец, рассматриваемая задача имеет и самостоятельное значение, так как ее решение применимо непосредственно для определения параметров 1Г1за за скачком уплотнения, возникающим в потоке со сравнительно небольшими сверхзвуковыми скоростями, при которых изменение удельных теплоемкостей в сжатом газе пренебрежимо мало. Эти скорости, определяемые для наиболее интенсивного — прямого — скачка уплотнения, соответствуют примерно числам. Чсс<3-н4.  [c.161]


Простая волна. Волна Римана. Течение Прандтля — Мейера. В газовой динамике существует важный класс течений, называемых простой волной. Общее свойство этих течений состоит в том, что они являются безвихревыми изоэнтропическими течениями. Простая волна имеет место в случае нестационарного одномерного течения и носит название волны Римапа. В случае плоского стационарного течения она называется течением Прандтля — Мейера. Отметим, что если в стационарном течении простая волна существует только при сверхзвуковых скоростях, то в нестационарном одномерном течении простая волна может существовать как при дозвуковых, так и при сверхзвуковых скоростях потока.  [c.52]

В соответствии с общими свойствами сверхзвукового течения поток остаётся однородным вплоть до самого края угла. Поворот течения, переводящий его в направление, параллельное другой стороне угла, осуществляется в отходящей от края угла волне разрежения, и вся картина движения складывается из трёх областей, отделённых друг от друга слабыми разрывами (Оа и ОЬ на рис. 91) однородный поток газа /, движущийся вдоль стороны угла АО, поворачивает в волне разрежения 2, после чего снова движется с постоянной скоростью вдоль другой стороны угла. Обратйм внимание иа то, что при таком обтекании не образуется 1шкаки  [c.505]

Уравнение (1-63), выражающее функцию 6(Я), является уравнением годографа скорости для данной линии тока в поляр ных координатах (рис. 1-14). Годограф ско рости представляет собой эпициклоиду Нормаль к годографу скорости F A являет ся характеристикой в плоскости потока Линию годографа скорости E F H U назы вают характеристикой в плоскости годогра фа. Все линии тока имеют общий годограф скорости, т. е. форма характеристики в плоскости годографа не зависит от характера течения и одинакова для всех плоских сверхзвуковых потоков газа данных физических свойств.  [c.25]

При больших числах Рейнольдса представляют интерес течения невязкой жидкости с постулированными на основании опыта тангенциальными (вихревыми) поверхностями разрыва скорости, которые можно рассматривать как отрывные течения при числе Рейнольдса, равном бесконечности. Весьма важные результаты получены с помощью асимптотических методов решения уравнений Навье — Стокса при числе Рейнольдса, стремящемся к бесконечности, которые являются развитием классической теории пограничного слоя Прандтля. Эти методы применяются в тех случаях, когда нарушаются основные предположения теории пограничного слоя, например вследствие изменения граничных условий. К таким случаям относятся и характерные области отрывных течений (отрыва и присоединения). При отрыве сверхзвукового потока эти области могут приобретать общие локальные свойства, не зависящие от конкретного вида отрывного течения, что способствовало дальнейшему развитию теории сверхзвуковых отрывных течений и стимулировало пересмотр представлений об отрыве при малых скоростях. Хотя при достаточно больших числах Рей-лольдса течение в пограничном слое становится турбулентным, интервал больших докритических чисел Рейнольдса представляет практический интерес, а результаты, получаемые с помощью асимптотических методов, позволяют осуществить общий анализ отрывных течений, определить критерии подобия и, несомненно,  [c.234]


Смотреть страницы где упоминается термин Общие свойства потока со сверхзвуковыми скоростями : [c.253]    [c.485]    [c.66]    [c.131]    [c.114]    [c.131]    [c.118]   
Смотреть главы в:

Гидродинамика решеток турбомашин  -> Общие свойства потока со сверхзвуковыми скоростями



ПОИСК



Л <иер сверхзвуковой

Общие свойства

Поток Свойства

Поток сверхзвуковой

Поток скорости

Сверхзвуковая скорость



© 2025 Mash-xxl.info Реклама на сайте