Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние условий нагружения на кинетику трещин

Влияние условий нагружения на кинетику трещин  [c.362]

Таким образом, введение понятия об эквивалентном напряжении, учитывающем влияние внешних условий нагружения на кинетику усталостных трещин, позволяет использовать результаты оценки трещиностойкости сплавов в условиях тестовых испытаний в качестве стандартных, эталонных—универсальных, а полученные численные характеристики, как константы материала, реализуемые в условиях автомодельности для любых видов внешних воздействий на элемент конструкции. Метод определения эквивалентного напряжения и его использование в практических целях рассмотрен в гл. V, VII.  [c.380]


Продемонстрированные подходы к моделированию роста трещины в условиях многопараметрического нагружения элементов конструкций имеют тем более достоверный результат, чем более полный экспериментальный материал накоплен в исследованиях образцов в контролируемых условиях опыта. Сложный характер влияния многопараметрического циклического нагружения на рост трещины в конструкции не позволяет исключить какой-либо фактор при моделировании этого процесса. Уточнение моделей происходит по мере выявления усталостных трещин в элементах конструкций. Поскольку исключить появление и развитие трещин в элементах авиационных конструкций не удается, то реализовать их эксплуатацию по принципу безопасного повреждения не удается без решения еще одной задачи. Необходимо уметь управлять ростом трещин, осуществляя их временную или полную остановку, с использованием рассмотренных выше физических явлений. Поэтому перейдем к рассмотрению общих принципов управления кинетикой усталостных трещин в элементах конструкций.  [c.443]

Условия нагружения элемента конструкции, как правило, могут быть реализованы в широком диапазоне варьирования температуры, частоты нагружения, асимметрии цикла путем силового воздействия на элемент конструкции по нескольким осям при разном соотношении между величинами компонент нагружения и т. д. Реальные условия многопараметрического эксплуатационного нагружения материала, воплощенного в том или ином элементе конструкции, ставят вопрос об использовании интегральной оценки роли условий нагружения в развитии процесса разрушения. В связи с этим необходимо введение представления об эквивалентном уровне напряжения для проведения расчетов с использованием новой характеристики напряженного состояния материала в виде эквивалентного КИН. Использование эквивалентной величины в свою очередь требует получения сведений о закономерностях процесса разрушения в некоторых тестовых или стандартных условиях циклического нагружения материала, в которых осуществлено построение базовой или единой кинетической кривой. Параметры кинетической кривой в стандартных условиях опыта становятся характеристиками только свойств материала. Разнообразие реальных условий нагружения материала, в том числе и влияние геометрии элемента конструкции, рассматривается в условиях подобия путем сведения всех получаемых кинетических кривых к базовой или единой кинетической кривой. Поэтому влияние того или иного параметра воздействия на кинетику усталостной трещины в измененных условиях опыта по отношению к тестовым условиям испытаний может быть учтено через некоторые константы подобия. Они выступают в качестве безразмерного множителя.  [c.190]


Во всех случаях логика учета того или иного фактора состоит в получении некоторой безразмерной поправки по отношению к принятым базовым условиям эксперимента. Для лабораторного опыта целесообразно использовать наиболее удобные условия нагружения, по отношению к которым и проводить оценку влияния того или иного фактора воздействия на кинетический процесс роста усталостных трещин. Под тестовыми условиями опыта предложено [129] понимать пульсирующий цикл одноосного растяжения при уровне напряжения 0,3 < [Оо/(сто,2)]о - 0,4, частоте нагружения 10-20 Гц, температуре 293-298 К, влажности воздуха от 70 до 75 % и давлении 760 мм рт. ст. Именно к этим условиям и могут быть сведены все вариации условий внешнего воздействия на элемент конструкции и проведена количественная оценка их роли в кинетическом процессе по величине безразмерной поправки. При этом условием эквивалентности получаемых кинетических кривых является эквидистантный характер их смещения относительно друг друга при изменении величины изучаемого параметра воздействия на кинетику усталостных трещин. Если же это не происходит, то либо экспериментально не удается сохранить условия подобия при изучении параметра воздействия, либо его влияние на кинетический процесс изменяется в направлении роста трещины, что должно быть рассмотрено путем введения дополнительной поправки как функции, например, которая учитывает изменение КИН в зависимости от длины усталостной трещины.  [c.254]

Представленные поправки в большинстве случаев характеризуют однопараметрическое изменение условий нагружения. К ним следует отнести в первую очередь асимметрию цикла и частоту приложения нагрузки, которая применительно к элементам авиационных нагрузок меняется в широком диапазоне. Однако в условиях эксплуатации внешнее воздействие на ВС оказывается комплексным и многопараметрическим. В связи с этим необходимо учитывать именно синергетическую ситуацию влияния на поведение материала, как и в случае внешнего воздействия, также необходимо рассматривать несколько факторов, через которые учитывается реакция материала на это воздействие. Поэтому далее влияние основных параметров внешнего воздействия, одновременное изменение которых является типичным для элементов авиационных конструкций и должно быть учтено при моделировании кинетики усталостных трещин, будет рассмотрено после введения еще одной характеристики в кинетические уравнения (5.63) — фрактальной размерности.  [c.254]

Влияние двухосного напряженного состояния материала на СРТ и долговечность резко снижается при возрастании асимметрии цикла. При максимальной асимметрии цикла 0,8 влияние двухосного нагружения проявляется достаточно слабо. Этот факт может быть объяснен доминированием механизма разрушения путем скольжения при одноосном нагружении с асимметрией R = 0,8n более (см. раздел 6.1). При небольшой амплитуде переменного цикла роль второй компоненты нагрузки не проявляется в кинетике трещин из-за того, что размер зоны пластической деформации сам по себе мал. Изменить размер зоны можно за счет мощного источника энергии, который вызывает существенное пластическое деформирование материала. В условиях высокой асимметрии цикла вторая компонента нагрузки не может оказаться таким источником энергии. Величина ее амплитуды определяется асимметрией i = 0,8 и поэтому очень  [c.327]

Пульсирующий цикл стационарного режима нагружения часто используется при исследовании кинетики усталостного разрушения. Однако в условиях эксплуатации рост усталостных трещин происходит при различных комбинациях асимметрии цикла, количества и направления действия сил и пр. Поэтому необходимо выяснить роль основных параметров цикла нагружения в развитии усталостных трещин. Наиболее изученной является асимметрия цикла нагружения, с которой целесообразнее всего начать рассмотрение влияния различных параметров цикла нагружения на процесс роста усталостных трещин.  [c.158]


Вот почему описание кинетики усталостных трещин в условиях двухосного нагружения правомерно осуществлять единой кинетической кривой на основе эквивалентного коэффициента интенсивности напряжения, который в случае двухосного асимметричного нагружения определяют по соотношению (6.1). В него входит поправочная функция на роль второй компоненты нагружения, асимметрию цикла и в нем учитывается возможное взаимное влияние указанных параметров друг на друга.  [c.309]

Исследования чувствительности титанового сплава ВТ8 к форме цикла нагружения осуществляли на образцах, вырезанных из дисков компрессоров в условиях изгиба [72]. Исследовали влияние на механизмы и кинетику разрушения материала в области малоцикловой усталости выдержки под нагрузкой в цикле нагружения в сравнении с треугольной формой цикла. Принципиальная особенность данного исследования влияния выдержки под нагрузкой на рост усталостных трещин состояла в том, что были исследованы три диска одной плавки. Методические детали изготовления образцов из дисков и испытания образцов представлены в работе [72].  [c.368]

Анализ закономерностей роста усталостных трещин при высокой асимметрии цикла показал, что при разном сочетании уровней асимметрии цикла и максимального напряжения могут быть реализованы кинетически эквивалентные процессы разрушения материала (рис. 6.12). Увеличение асимметрии цикла нагружения в пределах 10 % парировало по СРТ, увеличение максимального напряжения цикла на 50 % — при прочих равных условиях. Аналогичные результаты по определению влияния параметров нагружения на кинетику разрушения титановых сплавов было получено  [c.303]

Возникающая ситуация перед вершиной распространяющейся трещины и за ней оказывает различное влияние на развитие усталостной трещины при двухосном нагружении при различной ориентировке фронта трещины по отношению ко второй компоненте нагрузки. Это типично синергетическая ситуация в реакции материала на внешнее воздействие. В зависимости от того, какую роль играют внешние условия нагружения в кинетике усталостных трещин, материал имеет возможность задействовать различные механизмы разрушения, оказывающие влияние на скорость протекания процесса эволюции его состояния с распространяющейся усталостной трещиной. Добавление второй компоненты к нагружению по одной оси при благоприятной ориентировке трещины вызывает доминирование либо процесса пластической деформации в вершине трещины (перед ее вершиной), либо стимулирует эффекты контактного взаимодействия в перемычках между мезотуннелями за вершиной трещины. Выбор того или иного процесса происходит самоорганизован-но и зависит от того, какой из задействованных механизмов деформации и разрушения наиболее эффективно приводит к снижению темпа подрастания трещины, а следовательно, позволяет наиболее эффективно поддерживать устойчивость открытой системы — сохранять целостность элемента конструкции с развивающейся в нем усталостной трещиной.  [c.324]

Выполненный обзор литературы позволяет сделать вывод, что для описания влияния коррозионной среды можно использовать подходы, основанные на применении линейной механики разрушения. На наш взгляд, для проведения расчетных исследований кинетики усталостной трещины в коррозионной среде наиболее приемлем метод, изложенный в работе [168], с помощью которого можно рассчитать скорость развития трещин в коррозионной среде при различной частоте нагружения на основании данных о скорости их развития на воздухе. В случае, если КИН при соответствующей длине трещины в элементе конструкции будет больше, чем Ks , количество циклов, необходимое для роста трещины при этом условии, можно считать нулевым. Такое допущение дает консервативную оценку долговечности элемента конструкции, что в инженерной практике вполне допустимо.  [c.200]

В книге излагаются основные заиономерности механики замедленного циклического и быстропротекающего хрупкого разрушения материалов в зависимости от условий нагружения, вида напряженного состояния, механических свойств и структуры материала, рассматриваются соответствующие модели процессов деформирования я возникновения разрушения в вероятностной трактовке, а также кинетика развития трещин. Влияние нестационарной атружеяности на разрушение анализируется иа основе гипотез о накоплении повреждения. Предложен расчет а прочность по критерию сопротивления усталостному и хрупкому разрушению в связи с условиями подобия и учетом температурно-временных факторов, дается оценка вероятности. разрушекия.  [c.2]

Рассматриваемая ситуация является наиболее приближенной к условиям, в которых находится материал при эксплуатационном нагружении. Химический состав окружающей среды оказывает решающее влияние на рост трещин в широком диапазоне изменения частоты нагружения и асимметрии цикла, что определяет возможность обильного и неограниченного поступления агрессивных продуктов из окружающей среды в вершину трещины. Во всех работах по изз гению роли окружающей (афессивной) среды на кинетику усталостных трещин подчеркивается, что это синергетическая ситуация, в которой именно взаимное влияние среды и параметров цикла нагружения на поведение материала в вершине трещины определяет эффект в реализации того или иного механизма ее продвижения.  [c.385]


Многочисленными экспериментами установлено (см., например, 111], что жидкая среда, особенно коррозионная, не только увеличивает скорость роста усталостной трещины, но также изменяет характер самой диаграммы усталостного разрушения. Так, в наиболее общем случае взаимодействия чистой коррозионной усталости н коррозии под напряжением диаграмма усталостного разрушения в отличие от инертной среды (рис. 1, б, кривая 1) имеет вид, показанный на рис. 1, б кривой 2, который может существенно изменяться в зависимости от параметров нагружения (например, частоты нагружения [12]), структуры материала и физико-химических свойств среды (например, pH среды [131) При этом в отличие от испытаний в вакууме или на воздухе наблюдаются значительные расхождения в результатах исследований, выполненных по различным методикам на одних и тех же материалах и при одинаковых внешних условиях испытания, например, как указано в работе [14], в случае исследования влияния поляризации на кинетику усталостной трещины в алюминиевглх сплавах в 3,5 %-ном растворе Na l.  [c.287]

В.В.Панасюк с сотрудниками [59 150, с. 42—49], использо. ав разработанные ими оригинальное оборудование и методики, определили значение pH в вершине развивающейся трещины и изучили его влияние на скорость роста усталостной трещины в стали 40X13 в коррозионной среде с исходным pH =8. Они также показали, что при статическом нагружении в стационарной трещине минимальное значение pH может снижаться до 2,3. Установлено, что характер изменения pH в вершине усталостной трещины зависит от начальных значений pH. При исходном значении среды pH =8 наблюдается непрерывное уменьшение его в вершине трещины до 1,7 в момент разрушения образца, а при исходном значении pH = 2,3 этот показатель снижается в вершине трещины перед разрушением образца до —0,4..Таким образом, при циклическом нагружении степень снижения pH в вершине трещины выше, чем при статическом нагружении, а ее абсолютное значение зависит от величины pH исходного раствора. На основании изучения кинетики коррозионно-усталостного разрушения показано, что с изменением исходных значений pH среды в вершине трещины меняется не только скорость ее роста, но и характер кинетических кривых. При pH = 8 на кинетической кривой скорости роста трещины имеет место плато, типичное для коррозионного растрескивания. При pH =2,3 плато практически отсутствует. Поддержание заданных электрохимических условий в рабочей камере не означает их стабилизации в вершине трещины.  [c.106]

Для элементов современных конструкций, работающих в условиях воздействия температурных и силовых факторов, процессы перераспределения деформации, накопления новреждений и изменения механических свойств оказывают сопоставимое влияние на кинетику несущей способности, отражая особенности воздействия циклических и статических составляющих нагруженности. Эта кинетика особенно выражена для условий малоциклового нагружения при новынгенных температурах на стадиях образования и развития трещин.  [c.16]

Отсутствие зон ускорения и торможения трещины при выбранных условиях программного нагружения очевидно можно объяснить тем, что напряжение течения в этом случае в 2-3 раза выше предела текучести при однобоном растяжении. Это обусловлено тем, что в вершине трещины возникает объемное напряженное, состояние [409L в Также тем, что скорость деформации при циклическом нагружении больше, чем при статическом деформировании. Приложение напряжений в этих y flOBHHjt приводит, по-видимому, к образованию впереди растущей трещины пластической зоны настолько малой протяженности, что и создаваемое повреждение структуры металла не оказывает заметного влияния на кинетику роста трещины при последующем цикле нагружения.  [c.350]

Для расчетной оценки количества циклов до разрушения (появление трещины в покрытии лопатки) и запаса прочности лопатки с покрытием следует провести расчет кинетики деформирования бесконечной пластины с покрытием, задать тол-щину слоя покрытия лопаток и корсетных образцов провести расчеты кинетики деформирования корсетного образца для тех режимов, в которых испытывались корсетные образцы с покрытием приняв те же температурные режимы нагружения, провести расчеты кинетики НДС покрытия в условиях жесткого нагружения по результатам расчетов п. 3 определить константы материала покрытия по критерию циклического разрушения (7.35) для каждого режима из указанных в технических условиях провести расчет кинетики НДС лопатки без покрытия (но с возможным учетом влияния покрытия на температурное поле в лопатке) провести расчет кинетики НДС покрытия в условиях жесткого нагоужения, определенных в п. 5 по критерию разрушения (7.3о) определить число циклов до разрушения на каждом режиме эксплуатации лопатки с покрытием исходя из формул суммирования повреждений определить запас термоусталостной прочности лопатки с покрытием.  [c.479]

Интересные результаты были получены в работе [277], в которой в качестве параметра, определяющего скорость роста усталостных трещин, был принят эффективный коэффициент интенсивности напряжений /Сэф. рассчитанный с учетом трехмерности напряженно-деформированного состояния в вершине трещины и эффекта закрытия усталостной трещины. Однако величина /Сэф является параметром линейной механики разрушения и применима только при наличии ограниченной по размерам зоны пластической деформации у вершины трещины, что соответствует второму участку диаграммы роста усталостных трещин. Влияние же размеров образцов на скорость роста усталостных трещин наиболее существенно на первом и третьем участках диаграммы. Третий участок диаграммы соответствует высоким значениям коэффициентов интенсивности напряжений, когда для многих сплавов средней и низкой прочности характерно появление у вершины зон пластических деформаций значительных размеров. Поэтому для описания кинетики роста усталостных трещин в образцах различных размеров в высокоамплитудной области требуется применение параметров нелинейной механики разрушения. При этом необходимо выбрать такой из них, который бы в условиях упругопластического нагружения отображал реальное напряженно-деформированное состояние в вершине трещины.  [c.184]


Смотреть страницы где упоминается термин Влияние условий нагружения на кинетику трещин : [c.201]    [c.114]    [c.235]    [c.82]   
Смотреть главы в:

Безопасное усталостное разрушение элементов авиаконструкций  -> Влияние условий нагружения на кинетику трещин



ПОИСК



Влияние трещин

Кинетика

Нагружение Условия



© 2025 Mash-xxl.info Реклама на сайте