Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие уравнения для сплошных сред, жидкостей и газов

Общие уравнения для сплошных сред, жидкостей и газов  [c.62]

В учебном пособии рассмотрены основные вопросы совре менной гидромеханики статика, кинематика и динамика. Приведены выводы общих уравнений движения сплошных сред. Даны законы переноса импульса, тепла и вещества. Изложена теория потенциального днижения как для плоских, так и для пространственных потоков. Рассмотрена сжимаемость газа при дозвуковых и сверхзвуковых течениях. Освещены вопросы теории движения вязкой жидкости, подробно рассмотрены ламинарное и турбулентное движения в трубах и в пограничном слое. Дан метод расчета трубопроводов.  [c.2]


Уравнение энергии описывает процесс переноса теплоты в материальной среде. При этом ее распространение связано с превращением в другие формы энергии. Закон сохранения энергии применительно к процессам ее превращения формулируется в виде первого закона термодинамики, который и является основой для вывода уравнения энергии. Среда, в которой распространяется теплота, предполагается сплошной она может быть неподвижной (например, массив твердого тела) или движущейся (например, капельная жидкость или газ, в дальнейшем для них будет использоваться общий термин— жидкость). Поскольку случай движущейся среды является более общим, используем выражение первого закона термодинамики для потока (см. 18)  [c.265]

В последующих главах рассматривались простейшие модели сплошной среды идеальная (лишенная внутреннего трения) несжимаемая (капельная, обладающая капиллярными свойствами) жидкость или газ в условиях движения с малыми значениями числа Маха, характеризующего сжимаемость газа, и более общая модель идеального газа при больших до- и сверхзвуковых скоростях, когда свойство сжимаемости среды приобретает первостепенное значение. В последнем случае для определенности принятой модели приходилось еще дополнительно накладывать условие совершенства газа, выражаемого уравнением состояния газа,или задаваться наперед термодинамическим характером процесса движения газа (адиабатичность, изотермичность)..  [c.351]

В частях I, II, III, посвященных физической динамике, мы рассматривали материальные системы самого общего вида, не накладывая никаких ограничений на число степеней свободы (само это понятие было введено лишь в части IV) поэтому все полученные там результаты были справедливы в самом общем случае — в частности, для случая сплошной среды (упругого тела, жидкости, газа). Однако, рассматривая самый общий случай материальной системы, мы не смогли решить основной задачи динамики в случае несвободной системы (т. е. исключить неизвестные реакции связей и свести дальнейшее решение к чисто математической задаче интегрирования системы дифференциальных уравнений). Это удалось нам сделать только в части IV, посвященной элементам аналитической механики,—  [c.440]

Математическое описание гидромеханических процессов основано на известных из механики жидкости и газа общих уравнениях движения сплошной среды с использованием экспериментальных значений коэффициентов гидравлических сопротивлений, коэффициентов расходов и коэффициентов гидродинамических сил. Приложение общих уравнений и зависимостей гидромеханики к задачам динамики гидро- и пневмосистем имеет свои особенности, обусловленные принципом действия, конструкцией и режимами работы гидравлических и пневматических устройств. Характерными для гидро- и пневмосистем управления являются динамические процессы, при которых движение рабочих сред будет неустановив-шимся, т. е. в любой точке живого сечения потока давление, скорость и плотность среды зависят от времени.  [c.185]


Математическое моделирование. Теоретическое описание механизма взаимодействия потока сыпучего материала и воздуха выполнено с помощью общих уравнений динамики гетерогенных сред ( см. Приложение I). В фундаментальных работах по механике таких сред дано математическое описание этого взаимодействия для ряда практических задач с несущей сплошной средой (жидкость или газ) и с перемещаемой или неподвижной дискретной средой (твердые частицы, капли жидкости, пузырьки газа). Это прежде всего потоки аэрозолей и суспензий, газовзвесей и газожидкостных смесей, это процессы псевдоожижения и фильтрации, пневмо- и гидротранспорт, это наноси и метели. Поток сыпучего материала и увлекаемого им воздуха следует рассматривать, как отдельный подкласс двухкомпонентных потоков, в которых несущей средой является дискретная среда из твердых частиц, а несомой - псевдосплошная дисперсионная среда (воздух). Потоки частиц под действием гравитационного поля Земли движутся ускоренно, а возникающие аэродинамические процессы малоактивны (скорость воздушных течений, как правило, меньше скорости частиц), что существенно отличает их от хорошо изученных дисперсных сквозных потоков при пневмо- и гидротранспорте.  [c.39]

Дифференциальные уравнения движения, баланса энергии и веществ в потоках жидкости и газа, выведенные в гл. II, относились к совершеннопроизвольным средам, лишь бы только эти среды обладали двумя достаточнообщими свойствами — сплошностью и текучестью. При выводе уравнений были использованы второй закон динамики в применении для сплошной системы материальных частиц и общий термодинамический закон сохранения полной энергии системы.  [c.351]

В механике жидкости и газа, напротив, был получен ряд важных общих результатов. Так, было введено четкое понятие давления в идеальной жидкости (И. Бернулли, Л. Эйлер), разработаны некоторые общие положения гидравлики идеальной жидкости, в том числе получены уравнение Бернулли (Д. и И. Бернулли, Л. Эйлер) и теорема Борда. Наконец, благодаря главным образом трудам JI. Эйлера были заложены основы гидродинамики идеальной (капельной и сжимаемой) жидкости. Замечательно, что уравнения гидродинамики были построены Эйлером при помощи вполне современного континуального подхода. Тут к его результатам трудно что-либо добавить ив 47 наши дни (конечно, если не касаться термодинамической стороны вопроса). Однако блестящая по стройности построения общая гидродинамика идеальной жидкости оказалась в XVIII в. лигпенной каких-либо приложений, если не считать акустики, опиравшейся в то время на представления И, Ньютона, эквивалентные предположению об изотермичности процесса распространения звука. Опередивйхие более чем на век требования времени, континуальные представления Эйлера в гидродинамике идеальной жидкости нуждались лишь, казалось бы, в небольшом обобщении — последовательном введении касательных напряжений,— для того чтобы обеспечить построение основ всей классической механики сплошной среды. Но, по-видимому, именно опережение Эйлером своей эпохи и практических запросов того времени повлекло за собой то, что толчок к дальнейшему развитию механики сплошной среды дали только через три четверти века феноменологические исследования, основанные на молекулярных представлениях. Чисто континуальный подход, основанный на идеях Эйлера и Коши, был последовательно развит англ [йской школой в 40-х годах и завоевал полное признание только в последней трети XIX в.  [c.47]


Смотреть страницы где упоминается термин Общие уравнения для сплошных сред, жидкостей и газов : [c.52]   
Смотреть главы в:

Техническая гидромеханика  -> Общие уравнения для сплошных сред, жидкостей и газов



ПОИСК



283 — Уравнения жидкости

Общие уравнения

Среда сплошная



© 2025 Mash-xxl.info Реклама на сайте