Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двухфазные течения в условиях теплообмена

Глава восьмая. ДВУХФАЗНЫЕ ТЕЧЕНИЯ В УСЛОВИЯХ ТЕПЛООБМЕНА  [c.334]

ДВУХФАЗНЫЕ ТЕЧЕНИЯ В УСЛОВИЯХ ТЕПЛООБМЕНА  [c.336]

Расчетное определение границ областей и особенно режимов течения в обогреваемых каналах представляет собой чрезвычайно сложную задачу. Рассмотренные в 7.3 границы изменения структуры двухфазных адиабатных потоков не могут непосредственно использоваться для течения в условиях теплообмена. Действительно, установление определенного режима двухфазного течения при фиксированных расходах фаз происходит в общем случае на значительной длине, тогда как в условиях теплообмена соотношение расходов фаз непрерывно изменяется. Рекомендации 7.3 могут рассматриваться лишь как предельные для течений в обогреваемых каналах, т.е. позволяющие идентифицировать структуру двухфазной смеси в случаях, когда соответствующая локальным расходам фаз точка оказывается в глубине той или иной области на карте режимов, вдали от границ перехода от одних режимов к другим.  [c.339]


В гл. 7 рассматриваются адиабатные потоки. Хотя двухфазные течения без теплообмена со стенками канала встречаются в технике реже (в первую очередь это трубопроводный транспорт), чем потоки в условиях испарения или конденсации, в экспериментальных исследованиях, напротив, адиабатным потокам уделяется, видимо, больше внимания. Это естественно, так как, уменьшая число факторов, влияющих на систему, исследователь получит возможность лучше понять механизмы, определяющие характеристики двухфазного потока.  [c.287]

Выше при рассмотрении пленочной конденсации формулировка уравнений, описывающих движение и теплообмен в двухфазной системе, не вызывала принципиальных затруднений, поскольку обе фазы образовывали непрерывные потоки с одной отчетливо выраженной поверхностью раздела. Кипение представляет пример такого процесса, в котором компоненты потока могут быть в чрезвычайно сильной степени раздроблены на пузыри, капли, пленки. Для любого дифференциального объема каждого из таких конечных дискретных элементов системы безусловно справедливы рассматривавшиеся нами ранее обш,ие дифференциальные уравнения движения и теплопроводности. Точно так же для любой дифференциальной площадки на поверхностях раздела фаз справедливы рассмотренные ранее условия теплового и механического взаимодействия. Однако вследствие весьма большого числа дискретных элементов системы, их непрерывного возникновения, роста и деформации в процессе движения и теплообмена, весь такой двухфазный поток в целом должен характеризоваться некоторыми специальными вероятностными законами системы многих неустойчивых элементов. Здесь в известной степени можно провести аналогию с турбулентным течением однородной жидкости, в котором для каждого дифференциального элемента справедливо уравнение Навье-Стокса, а весь поток в целом подчиняется специальным (еще плохо известным) статистическим законам турбулентного течения.  [c.342]

Как хорошо известно, течение однофазного потока без трения и теплообмена в соплах и каналах постоянного сечения успешно анализируется. В результате критические условия формулируются сравнительно просто и ассоциируются с такими понятиями, как изоэнтропное течение, звуковая скорость и максимальный расход. Естественной и заманчивой представляется мысль о применении критических условий однофазного потока к двухфазному.  [c.71]

Для обратимых равновесных потоков показатель изоэнтропы дает возможность определить соотношение между давлением и плотностью, скорость потока, термодинамическую скорость звука и ряд других газодинамических характеристик. Однако большинство встречающихся на практике процессов течения двухфазных сред происходит неравновесно. Степень неравновесности зависит от многих факторов градиентов скоростей фаз, дисперсности среды, времени процесса, начальных и граничных условий и т. п. Причем в зависимости от размеров и структуры жидкой фракции в процессе расширения двухфазной смеси возможны не только конденсация, но и испарение — подсушка среды. Кроме того, скорости фаз в потоках, как правило, различаются, что приводит к дополнительным потерям на трение, выделение тепла и соответственно рост энтропии, Очевидно, что в этих условиях использовать термодинамический показатель k нельзя и речь может идти лишь о показателе адиабаты, учитываюшем степень неравновесности и необратимости процесса. Если исключить из анализа явления, характерные и для однофазных сред потери в пограничном слое, потери от неравномерности поля скоростей в вязких средах и др., то основными причинами необратимости процессов в двухфазных потоках можно считать потери от механического взаимодействия теплообмена и массообмена при конечной скорости обменных процессов между фазами.  [c.73]


Гл. 7 и 8 в наибольшей степени имеют прикладной характер. В гл. 7 вводятся основные количественные характеристики, обычно используемые при одномерном описании двухфазных потоков в каналах расходные и истинные паросодержания, истинные и приведенные скорости фаз, скорость смеси, коэффициент скольжения, плотность смеси. При рассмотрении методов прогнозирования режимов течения (структуры) двухфазной смеси акцент делается на методы, основанные на определенных физических моделях. Расчет трения и истинного объемного паросодержания дается раздельно для потоков квазигомогенной структуры и кольцевых течений. В гл. 8 описаны двухфазные потоки в трубах в условиях теплообмена. Приводится современная методика расчета теплоотдачи при пузырьковом кипении жидкостей в условиях свободного и вынужденного движения. Сложная проблема кризиса кипения в каналах излагается прежде всего как качественная характеристика закономерностей возникновения пленочного кипения при различных значениях  [c.8]

Изложенная выше методика расчета теплообмена при кипении в условиях вынужденного движения жидкости может применяться в тех режимах течения двухфазной смеси, где возможно пузырьковое кипение. Применительно к схеме рис. 8.1 это области II—IV и часть V-й. Для недогретой жидкости (xq < 0) пузырьковое кипение ограничено снизу минимально необходимым перегревом стенки Т -= АГ , а сверху — критической тепловой нагрузкой В отсутствие надежной теоретической модели закипания на твердой  [c.358]

Наиболее сложные законы тепло- и массообмена наблюдаются при дисперсно-кольцевой структуре двухфазного потока. В этом случае коэффициент теплоотдачи определяется действительной скоростью жидкости, текущей в пленке, и характером волнообразования на ее поверхности. Следовательно, знание параметров пленки является необходимым условием для создания обоснованных методов расчета интенсивности теплообмена в условиях дисперснокольцевого режима течения парожидкостной смеси. Эти знания являются также ключом к пониманию физического механизма возникновения кризисов теплообмена при кипении в трубах и позволяют получить рациональные формулы для расчета плотностей критических тепловых потоков или граничных паросодержаний, превышение которых ведет к резкому ухудшению теплоотдачи.  [c.231]

В условиях дисперсно-кольцевой структуры потока, т. е. с момента начала срыва капель с поверхности пленки, определяемого формулами (1.72) и (1.73), расчет коэффициента теплоотдачи следует вести, подставляя в формулу (8.5) действительную среднюю скорость жидкости в пленке, которая может быть во много раз меньше скорости w. Однако, как уже отмечалось, в обогреваемых трубах из-за набухания пристенного двухфазного слоя весьма трудно точно измерить толщину пленки, а следовательно, и среднюю скорость течения в ней жидкости. В связи с этим был иредло-жрн метод, дающий возможность, минуя непосредственные измерения, найти эффективное значение скорости жидкости в пленке Wэф, которым определяются интенсивность..теилообмена и гидродинамическое сопротивление при дисперсно-кольцевой структуре [180]. Метод основан на гидродинамической теории теплообмена. Предполагается, что в двухфазном потоке при определенных сочетаниях режимных параметров (так же как и в однофазном) устанавливается соответствие между интенсивностью теплообмена и гидродинамическим сопротивлением.  [c.243]

Основное различие в подходах к решению задачи теплообмена при конденсации на вертикальной поверхности и в вертикальной трубе в условиях ламинарного режима течения пленки конденсата под совместным действием гравитационных сил, и касательных напряжений, возникающих на границе раздела фаз, заключается в способах определения и учета сил, действующих на пленку. Для упрощения решения, а также в связи со слабой изученностью влияния парового потока на движение пленки конденсата и теплоперенос в ней обычно пренебрегают влиянием того или иного фактора сил тяжести [6.40— 6.42], поперечного потока пара [6.43, 6.44 и др.] и т. д. Однако почти все работы по конденсации движущегося пара имеют характерный недостаток — касательные напряжения на границе раздела фаз определяются по формулам, рекомендуемым для сухих гладких или шероховатых поверхностей [6.44—6.48] и справедливым для двухфазного кольцевого течения лишь в случае чрезвычайно малой толщйны пленки, когда отсутствует волновой режим течения или амплитуда волн не превышает толщины ламинарного слоя парового потока. В остальных случаях волнового режима сопротивление трения во много раз превышает сопротивление для гладкой твердой поверхности, что должно соответствующим образом отразиться на характере течения пленки и теплопереноса в ней. Имеющиеся расчетные рекомендации по теплообмену в рассматриваемой области удовлетворительно обобщают опытные данные, по-видимому, за счет корректирующих эмпирических поправок. Поэтому естественно расхождение расчетных и опытных данных, полученных при конденсации паров веществ с иными теплофизическими свойствами и отношением Re VRe, даже при соблюдении внешних условий (Re", АГ, q,P).  [c.158]


Исследовалась теплоотдача к потоку фреона-12, движущегося в горизонтальной трубе. Механизм теплообмена в двухфазном потоке изменяется в зависимости от режима течения. При расслоенном течении тепло передается таким же путем, как и при кипении в большом объеме, а экспериментальные данные обобщаются уравнением (10). При кольцевом течении теплопередача осуществляется путем макроконвекции двухфазного потока. Экспериментальные данные, полученные для этого режима течения в настоящей работе, обобщены эмпирическим уравнением (8),, которое в безразмерном виде аналогично уравнению (16). В дальнейших исследованиях предстоит проверить применимость этого уравнения в других условиях опытов. Необходимо также изучить критерии, характеризующие границы существования разных режимов течения. В потоке с очень высоким паросодержанием коэффициент теплоотдачи быстро возрастает с увеличением паро-содержания, но при определенном паросодержании коэффициент теплоотдачи внезапно падает до величины, соответствующей теплоотдаче к однофазному вынужденному потоку насыщенного пара. Это явление вызывает внезапное повышение температуры, стенки.  [c.271]

Приведенные формулы получены для воды и распространяются только на да.апазоны исследованных геометрических и режимных параметров. Для получения соотношения, справедливого для расчета интенсивности теплоотдачи в широком спектре режимов двухфазных течений на испарительном участке ЗПГК, сначала проанализируем закономерности гидродинамики и теплообмена на аналогичном участке прямотрубного парогенерирующего канала. В предыдущем параграфе было показано, что в змеевиках реализуются те же режимы двухфазного течения, что и в прямых трубах. Так как закономерности гидродинамики и теплоотдачи в прямых трубах изучены гораздо полнее, чем в змеевиках, то их предварительный анализ способствует более глубокому пониманию механизма теплоотдачи при аналогичных условиях в змеевиках.  [c.66]

В соответствии с общепринятой методикой изложения газодинамики гомогенных сред вначале даются основные уравнения движения влажного пара (гл. 3). Далее рассматриваются вопросы подобия и анализ размерностей в потоках влажного пара. В гл, 4 изучается механизм распространения слабых возмущений в двухфазных средах. Следующая — 5 гл. — посвящена исследованию одномерных течений влажного пара. Здесь рассматривается одномерное адиабатическое движение в условиях метастабильного и равновесного изменения состояния системы при дозвуковых и сверхзвуковых скоростях. Материалы этой главы позволяют проследить влияние влажности, внутреннего теплообмена и фазовых переходов на изменения скорости потока и термодинамических параметров в конфузорных и днффузорных квазиодномерных потоках.  [c.7]

Повышение качества оборудования — основной девиз, выдвигаемый 10-м пятилетним планом перед промышленностью. Создание надежно работаюш,его теплообменного оборудования имеет весьма важное значение для развития энергетики и других отраслей народного хозяйства. В эпоху научно-технической революции суш ествуюш ие нормативные материалы быстро устаревают, поэтому важное значение приобретает своевременная публикация новых достижений по рассматриваемому направлению. В конце 1975 г. в Ленинграде созывалось всесоюзное совещание под эгидой Научного совета АН СССР по комплексной проблеме Теплофизика , на котором проводилось комплексное обсуждение ряда вопросов теплообмена и гидродинамики двухфазных потоков применительно к парогенераторостроению. Особое внимание было уделено выяснению особенностей теплообмена при кипении и конденсации в условиях длительной эксплуатации энергетического оборудования, когда на теплоотдающей поверхности появляется накипеобразование, а также анализу таких специфических вопросов, как влияние примесей на зародышеобразование при кипении, внутренняя нестационарность при движении двухфазных потоков, волновое течение тонких слоев жидкости и т. п. В связи с этим возникает ряд новых научных проблем, в первую очередь сопредельных, решение которых становится обязательным.  [c.3]

Причиной возникновения кризиса теплообмена второго рода является высыхание пристенной жидкостной пленки в условиях, когда в ядре потока еще имеется жидкая фаза. Таким образом область действия кризиса теплообмена второго рода по самой своей природе ограничена дисперсно-кольцевым режимом течения двухфазного потока. В общем случае выпаривание пристенной жидкостной пленки может происходить как при отсутствии, так и при наьяичии орошения стенок канала каплями жидкости, выпадающими из парового ядра, причем возникновение кризиса теплообмена второго рода (при Х<1) возможно только при условии, что в парогенерирующем канале имеются участки поверхности, на которых интенсивность орошения меньше интенсивности испарения.  [c.269]

Рассматривается физичессая природа ухудшения теплообмена при дисперсно-кольцевом режиме двухфазного потока и на этой основе дается более общее определение понятия кризиса кипения II рода.Исследуется течение микропленки,условия необходтше для её выпаривания и возникновения кризиса теплообмена.Пол., ены расчетные зависи.гостй для определения расхода жидкости в пленке.  [c.364]

Когда расход жидкой фазы достаточно велик, т. е. Reo 30 000, FT m=W M Iто при всех структурах потока, предшествующих дисперсно-кольцевой, величиной w определяются не только интенсивность теплообмена, но и потери давления, обусловленные сопротивлением трения Артр- В этих условиях при адиабатном течении двухфазного потока перепад давления Артр можно считать, так же как и в однофазном потоке, по формуле  [c.243]


Смотреть страницы где упоминается термин Двухфазные течения в условиях теплообмена : [c.360]    [c.125]    [c.71]    [c.305]   
Смотреть главы в:

Механика двухфазных систем  -> Двухфазные течения в условиях теплообмена



ПОИСК



Течение двухфазное



© 2025 Mash-xxl.info Реклама на сайте