Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциальная энергия. Закон сохранения механической энергии

Потенциальная энергия. Закон сохранения механической энергии. Рассеяние механической энергии и диссипативная функция Релея  [c.378]

Мы пришли к так называемому интегралу энергии (закону сохранения механической энергии) если силовое поле потенциально и стационарно, то сумма кинетической и потенциальной энергий свободной материальной точки равна постоянной. Сумма кинетической и потенциальной энергий называется механической энергией, ее постоянное значение обозначено через Eq. Чтобы вычислить надо задать начальные значения координат точки и ее скорость. Если силовое поле потенциально и стационарно и, следовательно, если сохраняется (консервируется) механическая энергия свободной материальной точки, то такое поле называется консервативным.  [c.78]


Таким образом, при движении точки в стационарном потенциальном силовом поле ее полная механическая энергия остается постоянной величиной, что является законом сохранения механической энергии для точки, который и есть первый интеграл дифференциальных уравнений движения точки.  [c.351]

Следовательно, при движении под действием потенциальных сил сумма кинетической и потенциальной, энергий системы в каждом ее положении остается величиной постоянной. В этом и состоит закон сохранения механической энергии, являющийся частным случаем общего физического закона сохранения энергии. Величина  [c.321]

Закон сохранения механической энергии. Если все силы, приложенные к системе материальных точек, потенциальны, то сумма кинетической и потенциальной энергий системы постоянна  [c.333]

Так как в механизмах и машинах действуют силы сопротивления, которые не потенциальны, то происходит уменьшение механической энергии. Эта энергия расходуется на работу непотенциальных сил и переходит в другие виды энергии (например, в тепловую). Следовательно, закон сохранения механической энергии в этих случаях неприменим, и для поддержания установившегося режима работы машины или механизма необходим приток механической энергии извне.  [c.333]

Закон сохранения механической энергии. При движении материальной На материальную частицу, находящуюся частицы под действием силы в потенциальном поле, действует сила  [c.396]

Так, например, закон сохранения механической энергии справедлив при движении планет в поле ньютонианского тяготения чем ближе к Солнцу находится планета на своей эллиптической орбите, тем меньше ее потенциальная энергия и соответственно больше кинетическая (см. 44 —закон площадей). Скорость периодических комет, движущихся по очень вытянутым эллипсам, в пери-  [c.396]

Закон сохранения механической энергии. На материальную частицу, находящуюся в потенциальном поле, действует сила этого поля, поэтому при движении частицы скорость, а следовательно, и кинетическая энергия ее в общем случае меняются. Выражая в уравнении (207) работу А равенством (213), найдем зависимость изменения кинетической энергии от изменения силовой функции  [c.241]

Так, например, закон сохранения механической энергии справедлив при движении планет в поле ньютонианского тяготения чем ближе к Солнцу находится планета на своей эллиптической орбите, тем меньше ее потенциальная энергия и соответственно больше кинетическая (см. 36 — закон площадей). Скорость периодических комет, движущихся по очень вытянутым эллипсам, в перигелии во много раз превышает их скорость в афелии, но в любой точке орбиты сумма кинетической и потенциальной энергий кометы есть для этой кометы величина постоянная.  [c.242]


При движении тела вблизи земной поверхности на тело кроме силы тяжести действуют различные диссипативные силы, например сила сопротивления воздуха, поэтому закон сохранения механической энергии здесь неприменим происходит рассеяние механической энергии, переход ее в другие немеханические виды. Вместе с тем и немеханические виды энергии могут переходить в механическую энергию. Переход не только механической, но и всякой другой энергии из данного вида в эквивалентное количество энергии всякого другого вида подчинен всеобщему закону сохранения и превращения энергии, изучаемому в курсах физики. Согласно этому закону во всякой изолированной системе сумма энергий всех видов (кинетической, потенциальной, тепловой, электрической и т. п.) остается постоянной.  [c.242]

В случае стационарных связей для голономных систем с потенциальными силами справедлив закон сохранения механической энергии  [c.88]

Если на твердое тело действуют силы потенциального поля, то первым интегралом будет, справедливый в этом случае, закон сохранения механической энергии  [c.181]

Формула (91) выражает закон сохранения механической энергии для системы полная механическая энергия при движении системы в потенциальном силовом поле внешних и внутренних сил является постоянной величиной.  [c.314]

Это соотношение [первый интеграл системы (2)], в котором постоянная обозначена 2/г, выражает закон сохранения механической энергии Т -)- Я = /г, где потенциальная энергия Я — постоянная величина, принята равной нулю.  [c.464]

Таким образом, 5 характеризует соотношение между кинетической и потенциальной энергиями системы при ее движении. Другое соотношение следует из закона сохранения механической энергии для консервативной системы Т 4-П = 1г.  [c.405]

Это соотношение [первый интеграл системы (21)], в котором постоянная обозначена 2h, выражает закон сохранения механической энергии Т П = 1, где П — потенциальная энергия — постоянная, принятая равной нулю.  [c.484]

Связи, наложенные на гироскоп, при отсутствии трения в закрепленной точке являются идеальными и стационарными. Сила тяжести, действующая на него, является потенциальной. При этих условиях справедлив закон сохранения механической энергии (интеграл энергии)  [c.488]

Этот результат является следствием закона сохранения механической энергии, так как работа силы тяжести не зависит от формы пути и равна изменению потенциальной энергии тела.  [c.51]

Равенство (IV. 129) выражает закон сохранения механической энергии-, при движении в потенциальном силовом поле полная  [c.378]

Уравнение (4) выражает закон сохранения механической энергии для материальной точки если сила, действующая на материальную точку, консервативна, то полная механическая энергия этой точки остается во все время движения в потенциальном силовом поле постоянной.  [c.666]

Иначе обстоит дело с кинетической энергией, которая в разных системах отсчета имеет различное значение. Поэтому механическая энергия системы тел, равная сумме кинетической и потенциальной энергией, не одинакова в разных инерциальных системах отсчета и отличается на некоторую постоянную величину. Но если в одной из систем отсчета механическая энергия замкнутой системы тел постоянна, то нетрудно доказать, что она будет оставаться постоянной и в любой другой инерциальной системе отсчета, т. е. закон сохранения механической энергии справедлив для любой инерциальной системы отсчета. Не только кинетическая энергия те-ла, но и разность кинетических энергий этого тела изменяется при переходе от одной инерциальной системы отсчета к другой. Поэтому работа, совершаемая внешней силой и равная изменению кинетической энергии тела, не одинакова в разных инерциальных системах отсчета.  [c.82]


В процессе колебаний энергия, сообщенная системе вначале, при выведении ее из положения равновесия претерпевает в дальнейшем повторяющиеся превращения. При этом кинетическая энергия колеблющегося тела преобразовывается в потенциальную энергию взаимодействия частей системы, и наоборот. По закону сохранения механической энергии, в процессе колебаний полная энергия системы должна оставаться постоянной  [c.166]

Кинетическая энергия системы может быть только положи-гельиой. Поэтому из закона сохранения механической энергии получаем следующее неравенство для потенциальной энергии  [c.423]

Закон сохранения механической энергии. Допустим, что все действующие на систему внешние и внутренние силй потенциальны. Тогда  [c.321]

В качестве доказательства ограничимся следующими рассуждениями. Для консервативной системы имеет место закон сохранения механической энергии, т. е. T+n= onst, где Т — кинетическая, а П — потенциальная энергия системы. Поэтому, если в положении равновесия П=Пп11п, то когда система после малого возмущения придет в движение и будет удаляться от положения равновесия, значение П должно возрастать и, следовательно, Т будет убывать. Однако при возрастании П не может стать больше некоторой величины Ili=nn,jn+An, которая получится, когда Т обратится в нуль. Учтя это, можно начальные возмущения, а с ними и значение ДП сделать столь малыми, что когда у системы П=Пт +ДП ее отклонение от равновесного положения будет меньше любого сколь угодно малого заданного. Отсюда и следует, что равновесное положение является устойчивым.  [c.387]

Таким образом, если материальная частица движется в потенциальном поле под действием сил этого поля, то во всякое мгновение при всяком положении частицы сумма ее кинетической и потенциальной энергий есть величина постоянная. Равенство (247) выражает закон сохранения механической энергии и имеет применение в тех случаях, если на частицу не действуют никакие силы, кроме сил потенциального поля. Поэтому потенциальные поля называют также консервативными (от лат. onservativus — сохраняющий).  [c.396]

Так как связь, наложенная на маятник, стационарна и силы, под действием которых происходит его движение, потенциальны, то имеет место закон сохранения механической энергии, который можно получить, если умножить уравнение (125.41) на d(fldt  [c.184]

В случае абсолютно твердого тела работа всех внутренних сил равна нулю и, следовательно, потенциальная энергия внутренних сил является постоянной величиной, которую можно считать равной нулю. Тогда в (91) за потенциальную энергию следует принять только потенциальную энергию внешних сил, которая вместе с ки] етической энергией является постоянной величиной. При движении изменяемой механической системы сумма кинетической энергии системы и потенциальной энергии внешних сил не является постоянной величиной. Она становится постоянной величиной только в.месте с потенциальной энергией внутренних сил. 1Механпческие системы, для которых выполняется закон сохранения механической энергии, называют консервативными.  [c.314]

Таким образом, величина 5 характер 1зует соотношение между кинетической и потенциальной энергией системы при се дзижешш. Другое соотношение следует из закона сохранения механической энергии для консервативной системы  [c.375]

Наблюдая действительно происходящие движения, можно заметить, что полная механическая энергия не остается постоянной. С одной стороны, часть энергии движения уходит на преодоление всевозможных вредных сопротивлений, так что с течением времени полная энергия системы уменьшается с другой стороны, для поддержания движения или для его ускорения необходимо создать приток энергии, уходящей частично на компенсацию потерь энергии на преодоление вредных сопротивлений, частично на увеличение кинетической энергии системы. Ташм образом, никогда не приходится наблюдать движения в потенциальных силовых нолях, удовлетворяющие закону сохранения механической энергии в чистом виде, а всегда наблюдается наложение друг на друга нескольких сложных процессов, среди которых процесс движения в потенциальном поле играет более или менее значительную роль.  [c.233]

На основании закона сохранения механической энергии нетрудно доказать, что если тело боросить с поверхности Земли вертикально вверх, то его кинетическая энергия в нижнем положении будет равна потенциальной энергии в наивысшем положении.  [c.155]


Смотреть страницы где упоминается термин Потенциальная энергия. Закон сохранения механической энергии : [c.352]    [c.40]    [c.341]    [c.392]    [c.72]    [c.242]    [c.400]    [c.140]    [c.70]   
Смотреть главы в:

Краткий курс теоретической механики  -> Потенциальная энергия. Закон сохранения механической энергии

Сопротивление материалов и основы теории упругости и пластичности  -> Потенциальная энергия. Закон сохранения механической энергии



ПОИСК



Закон изменения и сохранения механической энергии. (Работа. Теорема о кинетической энергии. Потенциальные силы и потенциальная энергия. Закон изменения и сохранения механической энергии. Потенциальные кривые

Закон механической энергии

Закон сохранения

Закон сохранения механической энергии

Закон сохранения механической энергии материальной точки и механической системы при движении в потенциальном силовом поле

Закон сохранения энергии

Механические Энергия потенциальная

Потенциальная энергия. Закон сохранения механической энергии. Рассеяние механической энергии и диссипативная функция Релея

Потенциальная энергия. Закон сохранения энергии

Потенциальное силовое поле. Закон сохранения механической энергии

Сохранение

Сохранение механической энергии

Сохранение энергии

Энергия механическая

Энергия потенциальная



© 2025 Mash-xxl.info Реклама на сайте