Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства деформативные механические

Неучтенный температурный градиент в поперечном сечении образца приводит к значительным искажениям определяемых механических свойств. По данным [1] испытания графита при температуре 3000° С с прямым нагревом электрическим током на образцах диаметром 10 мм было отмечено занижение предела прочности в 4 раза, деформативности в 7.7 раза по сравнению с испытанием в условиях косвенного нагрева. При нагреве методом электросопротивления образцов с защитными покрытиями положение может еще более усугубляться из-за неравномерного распределения плотности тока по сечению образца вследствие различия величин удельных электрических сопротивлений материала покрытия и образца, могущих отличаться по величине на несколько порядков.  [c.52]


Из механических свойств анизотропных материалов инженера в первую очередь интересует их деформативность  [c.9]

Разработанные методы описания структуры фрактальных кластеров и основных процессов их агрегации могут быть использованы для построения теории структурно — механических свойств дисперсных систем как основы их физико-химической механики. Ключевой характеристикой теорий такого рода являются модули упругости, поскольку они определяют не только жесткость и деформативность дисперсных систем и материалов, но также их вязко— и термоупругое поведение, прочность и твердость. Существующие асимптотические оценки поведения модулей упругости в области перколяционных фазовых переходов [76] мало пригодны для конкретных расчетов напряженных состояний при различных видах нагружений.  [c.42]

Применение новых композиционных материалов с регулируемыми характеристиками состояния возможно только при условии их детального исследования. Примером таких материалов могут служить армированные пластики, представляющие композиции сверхпрочных армирующих волокон и различных связующих. Они обладают специфическими механическими особенностями, существенно, отличающимися от свойств традиционных материалов (сталей, сплавов и др.), в частности анизотропией деформативных и прочностных свойств, низкой сдвиговой жесткостью, сдвиговой ползучестью. В таких условиях известные теории и методы расчета элементов конструкций не всегда правомочны, что требует обогащения исходных математических моделей состояния.  [c.3]

Волокнистая форма упрочнителей и существенное разливе в прочностных и деформативных характеристиках волокон и матриц обусловливает анизотропию физико-механических свойств композиций, которую  [c.587]

Следовательно, построение теории твердого тела и, в частности, объяснение его прочностных и деформативных свойств в рамках классической физики невозможно, и необходимо привлекать квантово-механические представления.  [c.28]

В принципе крепежные элементы для холодной клепки можно изготавливать практически из всех конструкционных термопластов, в том числе наполненных волокнами. Но по комплексу физико-механических свойств лучшими являются кристаллизующиеся термопласты с высоким уровнем вынужденной эластичности, в частности полиформальдегид и ПА [71]. Для повышения деформативности во время клепки полиамидные стержни рекомендуется предварительно увлажнять. При использовании стержней круглого сечения во время расклепывания замыкающей головки остальная часть стержня находится в зажатом состоянии. Хорошие условия для формования потайной замыкающей головки при холодной клепке создаются, если ее располагают в металлической (присоединяемой к полимерной) детали.  [c.181]


Биомеханика биологических материалов и систем. Исследования в этом направлении принадлежат к фундаментальным, так как на их основе решается множество прикладных проблем, входящих в другие направления. Сюда относятся работы, посвященные изучению особенностей строения и механических свойств (упругих, деформативных и прочностных), а также разрушения различных мягких и твердых биологических тканей и даже целых биологических систем.  [c.477]

Помимо химического состава большое влияние на механические свойства оказывает физическая структура. Поскольку настоящая книга в основном посвящена деформативности и прочности кристаллических полимеров, введем некоторые элементарные понятия об их структуре.  [c.10]

Физико-механические свойства полимерных материалов зависят от видов химических соединений и химических элементов их образующих, степени полимеризации, определяющей величину макромолекул, структур макромолекул, их взаимного расположения и надмолекулярного строения твердого полимера. Особенности строения полимерных материалов обусловливают также рад реологических явлений релаксацию, механический гистерезис, последействие и течение, что отражается на деформативных свойствах пластических масс.  [c.5]

Для оценки изменения свойств стеклопластиков в процессе изучения химического сопротивления проводят механические, сорбционные, диэлектрические испытания, изучая кинетику их изменения при длительном контакте со средами. При этом механические испытания позволяют получить необходимые сведения о снижении кратковременных и длительных прочностных и деформативных характеристик, выявить закон старения и прогнозировать на этой основе изменение механических характеристик материала в процессе эксплуатации. В ходе изучения кинетики сорбции устанавливают показатели массопереноса (коэффициенты диффузии, проницаемости, сорбции). Сопоставление механических и сорбционных показателей позволяет установить корреляцию между ними, которая может быть использована при оценке эксплуатационного поведения изделий. Диэлектрические испытания позволяют оценить предельное состояние по величине емкостно-омических показателей и разработать на этой основе методы неразрушающего контроля за состоянием изделий в процессе эксплуатации.  [c.56]

Компоненты стеклопластика не в одинаковой степени участвуют в сопротивлении композиционного материала механическому воздействию. Так, прочностные и деформативные свойства связующего наиболее отчетливо проявляются в сопротивлении статическому изгибу и сдвигу и в меньшей степени-в сопротивлении растяжению и сжатию. Естественно, что сорбция среды, приводящая к изменению физико-механических свойств связующего, в первую очередь отражается на модуле упругости и прочности увлажненного стеклопластика при изгибе (табл. 5.2).  [c.123]

Высокая химическая стойкость и хорощие физико-механические свойства (термо- и теплостойкость, деформативность, прочность и т. д.) обусловили заметное увеличение объема и ассортимента полимерных материалов, применяющихся в антикоррозионной технике.  [c.63]

В общем случае анизотропии деформативность упругого тела характеризуется 21 независимой постоянной. Однако армированные пластики, как правило, обладают определенной симметрией механических свойств. Симметрия строения позволяет уменьшить число определяемых характеристик. В зависимости от целей, т. е. типа конструкции, для которой предназначен материал, и характера действующих нагрузок число исследуемых характеристик может  [c.29]

Отличие механических свойств термопластичных полимеров от свойств других типов конструкционных материалов заключается в их сравнительно низких деформативной устойчивости и прочности  [c.23]

В армированных пластиках (КВМ) армирующий волокнистый наполнитель воспринимает механические напряжения, определяя механические свойства материала — прочность, деформативность, жесткость. Полимерная матрица (связующая, находящаяся в межволоконном пространстве) служит для распределения механических напряжений между волокнами (частично она также воспринимает механические напряжения) и, что очень важно, определяет монолитность материала. Следует заметить, что в армированных пластиках (волокнистых композитах) фактически работают отдельные волокна и контактирующие с матрицей, но не нити или другие текстильные структуры в целом. Те или иные текстильные структуры важны прежде всего для создания необходимой ориентации волокон в материале или изделии.  [c.771]


В вопросах взаимодействия пути и подвижного состава железнодорожный путь рассматривается как весьма существенная часть единой механической системы путь—экипаж - При этом в первую очередь должно было обращено внимание на те особенности конструкции железнодорожного, пути, которые определяют динамическое его взаимодействие с подвижным составом, а именно его деформативные свойства и, прежде всего, его жесткость, рассеяние энергии колебаний, характер и параметры контактирования рельсов с колесными парами, характеристики неровностей рельсового пути в целом и отдельных его элементов в плане и профиле, и некоторые другие особенности и па раметры.  [c.11]

Знание физико-механических свойств материалов, их структуры и деформативности позволяет предсказать прочность материала, определить рациональные области его применения. Поэтому для понимания природы прочности материалов важно и необходимо знать, что представляют собой начальные дефекты в исходном материале, как изменяются их размеры и форма при воздействии нагрузок, агрессивных сред.  [c.9]

При использовании полимерных материалов в конструкциях уплотнительных узлов весьма важными характеристиками являются их механические свойства, в первую очередь упругие свойства. Поскольку уплотнительные узлы применяют в различных условиях, при различных температурах, изменение последних будет влиять на свойства полимерных материалов. Температурная зависимость упругих свойств полимеров отражает многие особенности их молекулярного строения, их деформативность. Под воздействием температуры происходят процессы окислительной деструкции, при которых изменяются структура и весь комплекс свойств полимера.  [c.74]

Установлено, что даже при незначительных уровнях внешних нагрузок в изделиях из композиционных материалов возникают микротрещины, которые вместе с различными видами воздействий (влажность, температура) существенно снижают физико-механические свойства композиционных материалов. Трещина является источником концентрации напряжений, это приводит к снижению несущей способности эксплуатируемого изделия, особенно при переменных напряжениях. Вследствие различия показателей деформативности и коэффициентов линейного теплового расши-"решгя  [c.17]

Разрабатывая молекулярно-механическую теорию трения, проф. Крагельский И. В. предложил рассматривать образующуюся фрикционную связь между двумя трущимися телами как некоторое физическое тело, обладающее определенными свойствами, отличающимися от свойств обоих трущихся тел [179]. Это так называемое третье тело является, некоторого рода, связью, обладающей упруго-вязким характером. На свойства этой связи оказывают влияние состояние поверхности, величина давления между телами, время контактирования, скорость приложения нагрузки и т. п. Вследствие дискретного характера контактирования выступы, имеющиеся на поверхностях трения, сглаживаются или сменяются впадинами, т. е. материал в поверхностном слое при трении непрерывно передеформируется. Рассматривая область передеформирования как третье тело , можно считать, что силы внешнего трения обусловлены силами вязкого сдвига, возникающими в деформативной области обоих тел. В этой области происходят значительные пластические деформации, обусловленные возникновением в контактных точках высоких  [c.547]

Упорядочение структуры линейных полимеров при их ориентационной вытяжке ведет к анизотропии механических свойств, имеющей не только количественный, но и качественный характер. При растяжении вдоль направления ориентации прочность определяется силами химической связи в молекулах, которые при этом располагаются более или менее параллельно и однородно. При растяжении же в поперечном направлении прочность ориентированного полимера определяется только силами межмолекулярного взаимодействия, а эти силы значительно меньше первых. В этом случае можно принять в пленках расчетную схему ортогональной анизотропии. Для многих листовых материалов, толщина которых мала по сравнению с размерами листа (бумага, картон, искусственные кожи, ориентированные пленки), характерны значительные деформативность и реономность свойств.  [c.23]

Гибридизация композитов посредством армирования волокнами разных физико-механических типов (сортов) позволяет в ряде случаев добиваться оптимального соотношения между жесткостными и прочностными свойствами материала. Чаще всего, однако, использование в композите волокон различных сортов имеет своей целью снижение стоимости конструкционного материала за счет замешения части дорогостоящей арматуры более дешевыми ее видами. Кроме полиармированных композитов к гибридам следует отнести слоистые композиты, содержащие слои, изготовленные из различных материалов. Слоистые гибридные композиты применяются в конструкциях, к которым наряду с требованиями по несущей способности предъявляются дополнительные требования (например, по тепло- и звукоизоляции). Структурные особенности указанных видов гибридных композитов необходимо учитывать в процессе расчета их физико-механических характеристик (в частности, деформативных).  [c.5]

Подавляющее большинство известных решений задач оптимизации конструкций из композитов получено в детерминированной постановке. При этом стохастический характер моделей оптимизации, обусловленный стохастичностью физико-механических свойств композита, учитывается посредством интерпретации описывающих эти свойства параметров модели как статистически усредненных величин. В отношении деформативных характеристик конструкций такой подход представляется достаточно правомерным, поскольку указанные характеристики получаются в результате усреднения большого числа элементов конструкционного композита (представительных объемов, монослоев и т. д.). Однако такие факторы, как, например, геометрические несовершенства, индивидуальны на уровне конструкции и поэтому в модели оптимизации, вообще говоря, усреднены быть не могут. Один из разделов главы посвящен анализу стохастических моделей оптимизации и методам де-терминизации некоторых частных случаев таких моделей.  [c.7]


При определении прочностных и деформативных характеристик эти методы связаны с разрушением образца или конструкции. Однако имеется ряд методов, которые позволяют оценить физйко-механические свойства материалов в изделиях, не доводя их до разрушения. К ним можно отнести склерометрические методы, основанные на определении диаметра или глубины отпечатка, или величины отскока индентора при его воздействии на исследуемый материал. В настояшее время эти методы получили наибольшее распространение при испытании строительных материалов и конструкций, особенно бетонных и железобетонных [140]. Значительный интерес при исследовании свойств пластмасс представляет метод микротвердости, который получил развитие при металлографических исследованиях. Применение этого метода связано с определением глубины и размеров микроотпечатков индентора в виде алмазной пирамиды. При этом измерение микротвердости производится при приложении весьма малых нагрузок, что делает этот метод также удобным при испытании пластмасс.  [c.67]

Исследован комплекс физико-механических свойств композиционных материалов на основе эпоксддных и полиэфирных смол в зависимости от степени наполнешш, природы (силикатный й углерод-соде1жа1ций) наполнителей, действия жидкой агрессивной среды, а также кинетика изменения их прочностных и деформативных свойств при контакте с агрессивной средой.  [c.133]

Во-первых, в геометрии взаимодействия трущихся поверхностей. При внешнем трении соприкосновение двух твердых тел происходит в отдельных точках, контакт всегда дискретен и площадь, на которой возникает внешнее трение, зависит от приложенной нагрузки, входящей в явном или неявном виде в расчетные уравнения. При внутреннем трении поверхность касания непрерывна и не зависит от нагрузки. Во-вторых, внутреннее трение характеризуется ламинарным перемещением материала в направлении вектора относительной скорости. При внешнем трении материал перемещается в направлении, перпендикулярном к вектору относительной скорости. В третьих, при внешнем трении возникновение и разрушение связей должно локализироваться в тонком поверхностном слое, при внутреннем трении деформативная зона охватывает весь объем. Таким образом, необходимым условием для внешнего трения является наличие положительного градиента механических свойств каждого из трущихся тел по глубине. Для внутреннего трения, наоборот, необходимо наличие отрицательного градиента механических свойств.  [c.12]

На основании полученной зависимости понижения температуры стеклования Д от мольной концентрации отвердителей т (рис.) можно сделать вывод, что флексибилизаторы обладают более высокой пластифицирующей способностью, чем традиционные аминные отвердители. Эти данные согласуются с результатами физико-механических испытаний (табл. 2) и показывают перспективность применения таких отвердителей для повышения деформативных свойств композиций на основе эпоксидных смол.  [c.61]

Поскольку деформативностъ — это способность деформироваться, то деформативная приспособляемость - способность приспособляться к нагрузке или другим воздействиям за счет направленного деформирования. При этом деформативностъ детали и/или соединения — это свойство материала и геометрической формы детали и/или сопряжения деталей. Поэтому задача обеспечения деформативной приспособляемости сводится к выбору материала с соответствующими механическими характеристиками (в частности, модулем упругости) и к выбору геометрической формы. В основном эта сторона в качественном виде  [c.91]

В статическом состоянии на манжету действуют контактное давление, обусловленное деформативностью герметизирующего элемента при монтаже сила от натяга пружины избыточное давление герметизирующей среды. Таким образом, расчетная формула [12] для статической составляющей контактного давления может быть представлена в виде Чст = Чупр + Чпр Чдавл- где Чупр упругая составляющая контактного давления, создаваемая физико-механическими свойствами материала ГУ Чпр контактное давление, возникающее под действием пружины  [c.7]


Смотреть страницы где упоминается термин Свойства деформативные механические : [c.48]    [c.18]    [c.94]    [c.8]    [c.171]    [c.74]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.233 , c.261 , c.273 , c.280 , c.291 , c.301 , c.320 , c.331 , c.341 , c.353 , c.370 , c.580 ]



ПОИСК



Деформативность

Свойства деформативные



© 2025 Mash-xxl.info Реклама на сайте