Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

НАСОСЫ Теория

В случае отсутствия подходящего модельного насоса натурный насос рассчитывается заново. При этом возникает необходимость в его экспериментальной доводке. Особенно большая экспериментальная работа должна быть проведена при разработке мощных насосов, к технико-экономическим показателям которых предъявляются повышенные требования. Для удешевления и упрощения эксперимента его производят над моделью, значительно меньшей натурного насоса. Теория подобия дает возможность, испытав модель проектируемого насоса и пересчитав результаты опытов, предсказать свойства создаваемого насоса.  [c.148]


При создании насосов для АЭС руководствуются общей теорией центробежных и осевых насосов, теорией подшипниковых опор, опытом создания и эксплуатации насосов различного типа и назначения. Специфические условия работы насосов в ядерных  [c.6]

Глава 12. ОСНОВЫ ТЕОРИИ ЛОПАСТНЫХ НАСОСОВ  [c.154]

И. А. Вышнеградский (1831—1895), известный как один из основоположников теории автоматического регулирования, сконструировал ряд машин и механизмов (автоматический пресс, подъемные маи]ины, регулятор насоса) и, будучи профессором Петербургского технологического института, создал научную школу конструирования машин.  [c.6]

Бесконечную совокупность одинаковых крыловых профилей, одинаково ориентированных и расположенных с постоянным шагом вдоль некоторой прямой, называют плоской гидродинамической решеткой. Такая решетка получается, если лопастную систему рабочего колеса осевой турбомашины (гидравлической, паровой или газовой турбины, насоса, вентилятора, компрессора) рассечь круговой цилиндрической поверхностью и развернуть па плоскость. Для турбомашин другого типа (радиальных) профили располагаются вдоль окружности и образуют круговую решетку. Исследование взаимодействия гидродинамических решеток с потоком жидкости или газа составляет одну из центральных задач теории турбомашин. В частности, для прочностных расчетов лопастной системы необходимо знать гидродинамические силы и моменты, действующие на лопасти рабочих колес турбомашин.  [c.268]

O. Рейнольдсом. В дальнейшем И. С. Громека были предложены уравнения вихревого движения жидкостей, а Н. П. Петровым разработана гидродинамическая теория смазки. Большой вклад в развитие гидравлики внес Н. Е. Жуковский, разработавший теорию гидравлического удара в трубах и предложивший классическое решение ряда технических вопросов водоснабжения, гидротехники и по расчету осевых насосов. Работы В. А. Бахметьева по исследованию движения жидкостей в открытых руслах, А. Н. Колмогорова и немецкого ученого Л. Прандтля продвинули вперед изучение турбулентных потоков и позволили создать полу-эмпирические теории турбулентности, получившие широкое практическое применение. Трудами Н. Н. Павловского и его школы разработана теория движения подземных вод и развита новая отрасль гидравлики — гидравлика сооружений.  [c.8]

В 1906 г. Н. Е. Жуковский совместно с С. А. Чаплыгиным опубликовал работу О трении смазочного слоя между шипом и подшипником . В ней было дано точное математическое решение задачи Петрова. В этом же году Н. Е. Жуковский разработал теорию подъемной силы крыла. На основании этой теории стало возможно производить расчеты крыльев самолетов, а также лопастей рабочих колес гидравлических турбин, центробежных и пропеллерных насосов. Таким образом была решена важнейшая проблема аэродинамики и гидродинамики.  [c.8]


В первую очередь необходимо отметить, что основные законы гидравлики широко применяются в теории лопастных насосов и гидравлических турбин. Так, например, уравнение Бернулли для относительного движения жидкости используется при анализе характера движения потоков в области рабочих колес ука-анных гидравлических машин. Оно служит также для исследования явления кавитации в лопастных насосах и гидравлических турбинах, позволяя устанавливать высоту всасывания или предельное число оборотов рабочих колес.  [c.3]

Идеи, -заложенные в указанном выше классическом сочинении профессора Н. П. Петрова, нашли свое дальнейшее отражение и в трудах Н. Е. Жуковского. В 1906 г. Н. Е. Жуковский совместно с С. А. Чаплыгиным опубликовал работу СЗ трении смазочного слоя между шипом и подшипником . В ней было дано точное математическое решение задачи Петрова. В том же году Н. Е. Жуковский разработал теорию подъемной силы крыла. На основании этой теории стало возможным производить расчеты крыльев самолетов, а также лопастей рабочих колес гидравлических турбин, центробежных и пропеллерных насосов. Таким образом, была решена важнейшая проблема аэродинамики и гидродинамики.  [c.9]

Известный русский ученый и инженер академик В. Г. Шухов разработал ряд ценнейших конструкций поршневых насосов для откачки нефти из глубоких скважин и первый изложил теорию работы паровых поршневых насосов прямого действия.  [c.228]

ПРИМЕНЯЮЩИЕСЯ В ТЕОРИИ НАСОСОВ  [c.234]

Как и в теории центробежных насосов, для классификации и подбора гидравлических турбин используется понятие о коэффициенте быстроходности. Здесь коэффициентом быстроходности называется число оборотов такой эталонной гидравлической турбины, которая при напоре 1 м развивает мощность 1 уг. с. = = 0,736 кет. В 73 было получено выражение для коэффици-  [c.278]

Учебник состоит из двух частей. В первой части рассмотрены основные теоретические положения, связанные с состоянием жидкости и с законами ее течения. Во второй части приведена общая теория течения жидкости в проточной части насосов и дана их классификация. Основное внимание уделено центробежным насосам, поскольку этот тип насосов нашел наибольшее применение на тепловых и атомных электрических станциях (АЭС).  [c.4]

Однако после разработки Л. Эйлером в 1750 г. математической теории процесса центробежного насоса начинается разработка новых типов насосов.  [c.133]

Основы теории центробежного насоса. Треугольники скоростей на входе и выходе с лопасти  [c.138]

Как уже отмечалось, характеристика центробежного насоса может быть получена только опытным путем. Между тем уже при проектировании часто необходимо иметь характеристику, чтобы выявить эксплуатационные свойства насоса. Получить характеристику насоса можно путем пересчета характеристики имеющегося насоса, геометрически подобного проектируемому по теории подобия (законам пропорциональности). Теория подобия позволяет также, выбрав модельный насос, получить размеры рабочих органов натурного насоса, а также его характеристику. Такой опособ проектирования насосов нашел щи-рокое применение.  [c.148]

Теория подобия позволяет установить формулы пересчета лопастных насосов, определяющие зависимость подачи, напора и мощности геометрически подобных насосов, работающих на подобных режимах, от их размеров и частоты вращения.  [c.149]

В чем заключается значение теории подобия применительно к, проектированию центробежных насосов  [c.204]

Указание. Напор насоса Н найти как разность удельных энергий жидкости на входе в насос и на выходе из него при этом учесть, что скорость на входе в решетку 2 равна vi, а давление равно давлению окружающей среды. К.п.д. движителя определить как отношение совершаемой им работы за /=1 с к мощности, развиваемой насосом. Для определения силы тяги использовать теорему импульсов.  [c.102]


Как видно из табл. 163, предельные значения допуска замыкающего звена ДЛ равны +0,37 мм и —0,37 мм, для нормальной же работы насоса требуется зазор от +0,02 до +0,05 мм. Отсюда видно, что сборка насоса при указанных в табл. 163 отклонениях в размерах отдельных деталей, составляющих размерную цепь, по методу полной взаимозаменяемости невозможна. Правда, при расчете было принято, что все детали изготовлены но предельным размерам и что эти предельные размеры суммируются наиболее невыгодным образом. Вероятность такого случая чрезвычайно мала поэтому нет оснований утверждать, что принятые допуски на размеры деталей насоса недостаточно строги. При помощи положений теории вероятностей было подсчитано, что если даже допустить сборку насосов по методу неполной взаимозаменяемости, то нри приведенных в табл. 163 значениях допусков брак или возврат насосов на переборку и пригонку будет достигать примерно 85%,, что совершенно недопустимо. Так как провести уменьшение допусков, не изменяя существенно характера сборки, практически затруднительно, было решено достигнуть необходимого соответствия между функциональной и технологической точностью при помощи подвижного компенсатора, не только исключающего пригоночные операции при сборке деталей, но и значительно понижающего требуемую точность изготовления.  [c.668]

В Институте механики Академии наук СССР была предпринята качественная экспериментальная проверка последнего положения. В принципе постановка такого опыта является очень простой стоит лишь поместить глицерин между двумя достаточно близкими пластинками, придав области, занятой глицерином, заданную форму, и затем вакуум-насосом откачивать глицерин из отверстий — скважин. При этом роль нефти будет играть глицерин, роль воды — окружающий воздух. Однако приходится преодолевать некоторые технические трудности при решении вопросов как осуществить] установку начальной формы контура нефтеносности и как получить заданные давления на скважинах. Теория щелевого лотка разработана В. И. Аравиным [9, 10] и изложена в книгах [И, 12].  [c.244]

Напор насоса теоро Напор насосной установки  [c.407]

Во второй части не только иесколько изменена методика изложения, но и тгесены дополнительные материалы особенно по теории подобия лопастных насосов, кавитации в них, а такк е даны современные примеры использования гидродинамических (лопастных) передач.  [c.3]

Нефтеперерабатывающее производсгво представляет собой с южнейший комплекс технологического и вспомогательного оборудования самого различного назначения - тептюобменники, реакторы, колон 1ые аппараты, насосы, трубопроводы и т.д. Все это оборудование работает длительное время в жестком эксплуатационном режиме и является источником повышенной опасности, посколь(су продукты переработки углеводородного сырья в своем больишнстве относятся к токсичным, пожаро- и взрывоопасным. Все это обуславливает повышенные требования по надежности и безопасности эксплуатации технолот и-ческого нефтегазового оборудования. Следует отметить, что вопросы теории и практики надежности относятся к ряду наиболее с южных научных направлений, объединяющих большое количество узких технических дисциплин - математическую статистику, механику разрушения, статистическую физику, материаловедение, физику твердого тела и др. В свою очередь понятия и методы теории надежности носят универсальный характер и применимы к объектам и системам различной природы.  [c.127]

В середине XVIII в. член Российской академии наук Леонард Эйлер (1707—1783) создал знаменитую теорию лопастных гидравлических машин, опубликованную в труде Более полная теория машин, приводимых в движение действием воды (СПб, 1754). Академик Эйлер вывел зависимости, характеризующие работу лопастных гидравлических машин, опередив технику почти на сто лет. Только в середине XIX столетия, когда в 1835 г. А. А. Саблуков изобрел центробежный насос, уравнения Эйлера стали находить применение при проектировании гидравлических турбин и центробежных насосов. Использование работ Эйлера началось в конце XIX столетия, когда были созданы достаточно быстроходные двигатели для насосов, а гидроэнергетика стала получать более широкое развитие. В 1889 г. был сконструирован и изготовлен В. А. Пушечниковым первый глубоководный осевой насос, который в свое время работал на московском водопроводе.  [c.228]

В теории насосов применяется ряд терминов и определений, которые относятся к насосам всех типов. Рассмотрим схему работы насоса, включенного в систему, подающую воду из источника водоснабжения в напорный резервуар (рис. 148). При работе насоса во всасывающем грубопроводе и всасывающей камере создается вакуум, который обеспечивает подъем воды через всасывающую трубу из водоприемного колодца в насос. Этот вакуум должен быть достаточным для подъема воды из колодца на высоту Лвс (от уровня воды в колодце до центра насоса), для преодоления потерь энергии во всасывающей линии къивс, а также для создания скорости во всасывающей гру-  [c.234]

Академик Г. Ф. Проскура на основании разработанной им еще в 1931 г. вихревой теории центробежных насосов предложил следующую зависимость для определения поправки, учитывающей влияние конечного числа лопастей на значение тео- ретического напора  [c.240]

В общей схеме тепловой электрической станции ее насосное оборудование занимает значительное место. Развитая система трубопроводов различного назначения, конденсатные, циркуляционные, питательные насосы, насосы систем топливоснабжения, вакуумные насосы для заполне ния циркуляционных насосов водой при их пуске и т. д. могут быть правильно рассчитаны, спроектированы и смонтированы лишь на основе прочных знаний в области теории этих машин. Для грамотной эксплуатации, ремонта и наладки насосов также нужно иметь соответствующую подготовку в области гидравлики.  [c.8]


Наконец, теория подобия дает возможность, испытав насос при одной частдте вращения, пересчитать характеристику на любую другую частоту.  [c.148]

Рассмотрены первый и второй законы термодинамики с детальным обоснованием понятия энтропии и элементами эксергетнческого анализа, свойства реальных рабочих тел, термодинамика потока, влажный воздух, а также холодильные установки и тепловые насосы. Изложены вопросы теплопроводности, конвективного теплообмена и излучения. Рассмотрены элементы теории пограничного слоя, современные методы расчета теплообменных аппаратов.  [c.2]

Второй закон термодинамики является основой теории теплоэнергетических установок, холодильных установок, теплового насоса и термотрансформаторов. Он используется также для расчета термодинамических параметров реальных газов, паров и жидкостей. Всестороннее рассмотрение второго закона термодинамики в этом аспекте выходит за рамки настоящего учебника, поэтому в настоящей главе рассматриваются только те вопросы, связанные со вторым законом термодинамики, которые используются в последующих общеннженерных и специальных дисциплинах химико-технологических вузов.  [c.89]

Используя теорему об изменении момента количества движения и допущения, что рабочее колесо имеет бесконечно большое число лопастей, толщина которых равна нулю, а также об отсутствии потерь мощности в насосе, получаем уравнение центробежного насоса — формулу для опргеделения идеального напора при постоянной частоте вращения  [c.116]

Карно начинает книгу с восхваления паровых машин, которые тогда получали широкое распространение. Он тут же отмечает, что теория их не разработана, а для того, чтобы она появилась, нужно рассмотреть вопросы тепловых двигателей вообш,е. Карно рассматривает схему такого двигателя ...сперва сжать воздух насосом, затем пропустить его через вполне замкнутую топку, вводя туда маленькими порциями топливо при помощи приспособления, легко осуществимого затем заставить воздух выполнить работу в цилиндре с поршцем или в любом другом расширяющемся сосуде и, наконец, выбросить его в атмосферу... Заметим, ведь это описание работы двигателя, изобретенного почти через 70 лет после Карно Рудольфом Дизелем Каким воображением должен был обладать ученый, чтобы вести разговор о машинах, не только еще не построенных, но даже еще и не задуманных  [c.105]


Смотреть страницы где упоминается термин НАСОСЫ Теория : [c.175]    [c.175]    [c.228]    [c.305]    [c.305]    [c.308]    [c.6]    [c.279]    [c.312]    [c.170]    [c.78]    [c.6]    [c.112]    [c.367]    [c.290]   
Машиностроение Энциклопедический справочник Раздел 4 Том 12 (1949) -- [ c.341 ]



ПОИСК



И. 3. ЗАЙЧЕНКО) НАСОСЫ И ГИДРОМОТОРЫ Общие вопросы теории и расчета насосов и гидромоторов

Основные вопросы теории объемных насосов и гидромоторов

Основные определения, применяющиеся в теории насосов

Основы теории лопастных насосов

Основы теории подобия лопастных насосов

Основы теории струйного насоса, работающего на скачке давления

Основы теории центробежного насоса. Треугольники скоростей на входе и выходе с лопасти



© 2025 Mash-xxl.info Реклама на сайте