Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статистическая сумма каноническая большая

Статистическая сумма каноническая большая — 321  [c.798]

Целесообразно поэтому рассмотреть некоторые модели, которые допускают точные решения, т. е. такие, для которых статистические суммы канонического или большого канонического распределения Гиббса могут быть найдены без всяких приближений. Первой мы рассмотрим одномерную магнитную модель Изинга, т. е. одномерный кристалл , на котором расположены на равных расстояниях узлы (общее число узлов /V 1). В узлах решетки находятся магнитные диполи с магнитным моментом рв- Проекция магнитного момента на направление внешнего магнитного поля Н, которое мы будем считать постоянным и однородным, может принимать два значения рв Мы будем считать, что взаимодействуют друг с другом только соседние диполи, и обозначим через е и е энергии взаимодействия двух диполей с параллельными и антипараллельными магнитными моментами соответственно. При // = 0, в случае, когда е < е, параллельная ориен-  [c.434]


Чтобы избежать обременительного граничного условия (90), которому должна подчиняться процедура суммирования в (115), Курт [196] предположил, что реальный газ, занимающий объем V, находится в тепловом и материальном контакте с очень большой системой, действующей не только как термостат, но и как резервуар молекул и кластеров разного размера. Между большой и малой системами происходит обоюдный обмен анергией и частицами. Однако благодаря своим огромным размерам большая система навязывает малой свои значения температуры и химических потенциалов, которые следует считать заданными. В этом случае действует статистическая сумма для большого канонического ансамбля  [c.57]

Статистическая сумма для большого канонического ансамбля систем с заданным гамильтонианом выражается формулой  [c.249]

Такой ансамбль представляет собой совокупность бесконечно большого количества систем, имеющих последовательно возрастающее до бесконечности число молекул N, причем каждая система описывается канонической статистической суммой (110). Подставляя (115) в (116), делая перестановку операций суммирования и умножения и учитывая формулу разложения в ряд экспоненты, Курт получил  [c.57]

Сейчас мы в первый раз продемонстрируем преимущества большого канонического ансамбля. Попытаемся получить термодинамические характеристики из большой статистической суммы (4.5.7) которая в данном случае имеет следующий вид  [c.185]

В полной аналогии со статистической суммой Z канонического распределения Гиббса во всех приложениях большого канонического распределения важную роль играет так называемая большая статистическая сумма по состояниям  [c.108]

Термодинамические соотношения для большого квантового канонического ансамбля можно вывести из равенства (1.3.68). Дифференцируя его по Т, /х и используя явное выражение (1.3.71) для квантовой статистической суммы, получим  [c.63]

Заново вывести результаты задачи 8.7 этим методом, используя следующие выражения для большой канонической статистической суммы  [c.280]

Рассмотрим газ, состоящий из N небольших твердых сфер, взаимодействующих посредством парных сил, имеющих большой радиус действия и плавно меняющихся. Кроме того, будем считать потенциал взаимодействия ф везде отрицательным или равным нулю. Рассмотрим каноническую статистическую сумму для такого газа. Если мы хотим вывести из нее уравнение состояния, нам следует найти ее зависимость от объема. На многих примерах мы видели, что интегрирование по импульсам приводит только к умножению на (ср. задачи 3.5 и 11.9) этот множитель может быть опущен, так как он не играет роли в рассматриваемом случае. Для оценки конфигурационной статистической суммы разделим объем V на ячейки объемом Д, достаточно малые для того, чтобы можно было считать потенциал ф внутри А практически постоянным, но вместе с тем достаточно большие, чтобы каждая ячейка содержала большое число частиц. Пусть Г — радиус-вектор г-й ячейки и — число частиц в этой ячейке. Если величина б представляет собой объем твердой сферы и если со (N1) — объем фазового пространства для N1 таких сфер в объеме А, то в одномерном случае имеем для со (N1) (см. задачу 9.3)  [c.335]


Вывод этой формулы [102—104], по сути дела, аналогичен переходу от соотношения (2.37) к уравнению (2.40) однако здесь следует использовать большой канонический ансамбль, так как нам нужно варьировать плотность. По аналогии с выражением (2.35) составим большую статистическую сумму  [c.115]

Здесь 3 называется большой канонической статистической суммой (ее можно назвать также статистической суммой Т — х-рас-пределения) и определяется в классическом случае формулой  [c.37]

Показать, что статистическая сумма большого канонического ансамбля классического идеального газа из одноатомных молекул имеет вид  [c.76]

ДЛЯ большого канонического распределения не является образом Лапласа, а представляет собой просто степенной ряд из функций Zдг. Однако свойства ее подобны свойствам статистической суммы Z (Р), описанным в 1.  [c.125]

Рассмотрим большой канонический ансамбль с известным химическим потенциалом л [абсолютная активность Л = ехр(ц/ Г)] и вычислим статистическую сумму  [c.213]

Т. е. определенное нами как максимизирующим энтропию системы с заданными параметрами м Л распределение ш п оказывает -ся большим каноническим распределением Гиббса, а — большой статистической суммой.  [c.389]

Ввести функцию распределения флуктуаций энергии и числа частиц w E N) в большом каноническом ансамбле. Найти эту функцию в гауссовом приближении и с ее помощью вычислить средние значения ((А ) ), ((АД/ ) ), AEAN). Сравнить результаты вычисления с теми, которые получаются дифференцированием логарифма статистической суммы для большого канонического распределения по Т и /х.  [c.78]

Конкретизируя понятие о статистических ансамблях, В. Гиббс ввел понятие о микроскопическом, каноническом и большом каноническом ансамблях для равновесных систем [5]. Впервые ква-зиклассический предел для статистической суммы получен Кирквудом [18].  [c.212]

Ур-ние (9) составляет термодинамич. основу для вычисления натяжения мембраны у, а также др. поверхностных избытков путём дифференцирования статистических сумм малого канонического (при постоянных Т и iV,) и большого канонического (при постоянных Г и цО ансамблей (см. Гиббса распределения), выражаемых через потенциалы межмолекулярного взаимодействия и молекулярные ф-ции распределения. При этом учитываются энергия теплового движения атомов, молекул и ионов, энергия ван-дер-ваальсовых сил и сил эл.-статич. взаимодействия ионов и ионогенных групп в молекулах, а также сил бор-новского отталкивания и водородных связей.  [c.129]

Ф.— Д. с. для системы взаимодействующих частиц основана на методе Гиббса для квантовых систем. Она может быть реализована, если известны квантовые уровни S, системы и удаётся вычислить статистическую сумму Z, напр, для большого канонического распределения [йббса  [c.284]

После Курта большой канонический ансамбль использовал Стил-линджер [197], который вывел без приближений формальные соотношения для давления и среднего числа частиц в открытой системе-неидеального газа в рамках равновесной теории физических кластеров Френкеля—Банда. Хилл [198] предложил рецепт вычисления большой статистической суммы для неидеального газа, разбивая ее на частные кластерные статистические суммы совместшше  [c.58]

В гл. 4—6 мы изложили основной метод равновесноЁ статистической механики. Коротко идею этого метода можно сформулировать следующим образом. Исходя из принципа равных априорных вероятностей, можно сконструировать определенное число равновесных ансамблей. Из них наиболее важны канонический и большой канонический ансамбли в термодинамическом пределе они становятся эквивалентными. Затем демонстрируется, что нормировочные множители — статисттеские суммы, соответствующие этим ансамблям,— содержат всю информацию, необходимую для вычисления термодинамических величин. Следовательно, проблема равновесной термодинамики сводится к вычислению статистической суммы.  [c.254]

Такое отличие от единицы фактора 2з является несуш,ественным. Райс и Катц считают, что ноступатель-но-враш ательный парадокс 22 10 связан с ошибочным предположением, будто свободная энергия капли в классической теории зародышеобразования соответствует покоящемуся центру масс капли. Они сначала находят частичную функцию для такой застывшей капли, затем учитывают внутреннее движение центра масс. Доступный этому движению объем полагается равным объему самой капли. В выводе используется выражение для свободной энергии капли через химический потенциал и поверхностное натяжение, а также связь свободной энергии с интегралом состояний. Дискуссия не закончена. Абрахам и Паунд [60] не согласны с анализом [58]. Они тоже применили метод большого канонического ансамбля Гиббса и нашли, что вклад вращательной статистической суммы существенно зависит от модели, которой описывается капля. Соответствующий множитель в нормировке может меняться от  [c.61]


СТАТИСТИЧЕСКАЯ СУММА — нормирующий множитель, входящий и выражение для статистич. м ,т-рицы каноиич. распределения в квантовом случге. Выражения для С. с. различны для системы с заданным числом частиц (см. Гиббса распределение каноническое) и для системы с иеремеииым числом частиц (см, Гиббса >асп >еделение большое каноническое). В 1-м случае С. с.  [c.72]

Для onnqaHHH равновесного состояния молекулярных систем обычно используется большой канонический ансамбль Гиббса. Для однокомпонентной системы из N частиц большая статистическая сумма для такого ансамбля  [c.220]

Как показано в задаче 11.4, условие сосуществования двух фаз = = pJ можно также вывести путем максимизации канонической статистиче-скои сзгммы для неоднородной плотности при Т <. Тс- Подобный анализ большой канонической статистической суммы позволяет установить условие  [c.233]

Соотношения, полученные для функций Z и О, а также Н и 2, можно обобш ить на статистические суммы других более обш их канонических распределений. Каноническому распределению с заданным параметром х соответствует каноническое распределение, которое определяется сопряженной силой X вместо х. Статистическая сумма является образом Лапласа (или производя-ш ей функцией) для статистической суммы 2 . Функции и Хх могут быть связаны друг с другом с помощью математических преобразований. Если эти преобразования провести асимптотически для больших (макроскопических) систем, то они совпадут с термодинамическими преобразованиями (преобразованиями Лежандра) для термодинамических функций.  [c.127]

Автор называет функциями состояний (partition fun tion) величины Q, Q, 3, т. е. статистический вес для микроканонического ансамбля и статистические суммы для канонического и большого канонического ансамблей Гнббса. В русской литературе обычно избегают употребления термина функции состояний в этом смысле, но мы оставили его в переводе, так как не существует эквивалентного русского термина, объедн-няющего величины 2, Q н S. — Прим. ред.  [c.37]


Смотреть страницы где упоминается термин Статистическая сумма каноническая большая : [c.143]    [c.58]    [c.150]    [c.150]    [c.154]    [c.61]    [c.62]    [c.212]    [c.422]    [c.39]    [c.788]   
Термодинамика и статистическая физика Теория равновесных систем (1991) -- [ c.321 ]



ПОИСК



Большая статистическая сумма

Большая сумма

Вид канонический

Каноническая и большая каноническая суммы

Куб суммы

Статистическая сумма

Статистическая сумма каноническая

Статистические суммы суммы



© 2025 Mash-xxl.info Реклама на сайте